Physics, asked by adarshakumar456, 7 months ago

Remaining time (Hours : Minutes : S
7.The self-induced emf in a 0.2 H coil when a current in it is changing at the rate of 100 A /sec is​

Answers

Answered by Anonymous
18

Answer:

 \boxed{\mathfrak{Self-induced \  EMF \ (\epsilon) = 20 \ V}}

Given:

Self inductance (L) = 0.2 H

Rate of change of current ( \sf \dfrac{di}{dt} ) = 100 A/s

Explanation:

Self-induced EMF in coil when current varies through the coil:

 \boxed{ \bf{ \epsilon =   L\dfrac{di}{dt}}}

By substituting values in the equation we get:

 \rm \implies \epsilon =   L\dfrac{di}{dt} \\  \\  \rm \implies \epsilon = 0.2 \times 100 \\  \\  \rm \implies \epsilon = 20 \: V

Answered by DARLO20
74

GIVEN :-

  • Sᴇʟғ ɪɴᴅᴜᴄᴛᴀɴᴄᴇ = \bf\red{L} = 0.2L

  • Rᴀᴛᴇ ᴏғ ᴄᴜʀʀᴇɴᴛ ғʟᴏᴡ = \bf\red{\dfrac{dI}{dt}} = 100A/sᴇᴄ

TO FIND :-

  • Iɴᴅᴜᴄᴇᴅ ᴇ.ᴍ.ғ .

SOLUTION :-

Wᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

  • \bf\pink{N\:\phi\:=\:L\:I}

Wʜᴇʀᴇ,

  • N = ɴᴏ. ᴏғ ᴄᴏɪʟs .

  • \bf{\phi} = ᴍᴀɢɴᴇᴛɪᴄ ғʟᴜx .

  • L = sᴇʟғ ɪɴᴅᴜᴄᴛᴀɴᴄᴇ .

  • I = ᴄᴜʀʀᴇɴᴛ ғʟᴏᴡ .

Nᴏᴡ, ᴅɪғғᴇʀᴇɴᴛɪᴀᴛᴇ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴇǫᴜᴀᴛɪᴏɴ,

\bf{\implies\:\dfrac{d(N\phi)}{dt}\:=\:\dfrac{d(L\:I)}{dt}\:}

\rm{\implies\:N\dfrac{d\phi}{dt}\:=\:L\dfrac{d\:I}{dt}\:} ----(1)

Wᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\huge\orange\star \huge\bf{\gray{\underline{\pink{\boxed{\purple{\varepsilon\:=\:N\dfrac{d\phi}{dt}\:}}}}}}

Wʜᴇʀᴇ,

  • \huge\bf\red{\varepsilon} = ᴇ.ᴍ.ғ ᴏғ ᴛʜᴇ ᴄᴏɪʟ .

Nᴏᴡ, ᴘᴜᴛᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ ᴀʙᴏᴠᴇ ғᴏʀᴍᴜʟᴀ ɪɴ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ(1)

\bf{\implies\:\varepsilon\:=\:L\dfrac{d\:I}{dt}\:}

\rm{\implies\:\varepsilon\:=\:0.2\times{100}}

\bf\green{\implies\:\varepsilon\:=\:20\:v}

\huge\red\therefore Tʜᴇ ᴇ.ᴍ.ғ ᴏғ ᴛʜᴇ ᴄᴏɪʟ ɪs "20" .

Similar questions