Renu did 1/2 of the word yesterday and 1 /3 of the word today how much work will she have to do tomorrow to complete the remaining work ?
Answers
Step-by-step explanation:
Let the one parallel side be a and other be a+16
We know that :
\star \sf\: Area \: of \: Trapezium = \dfrac{1}{2} (Sum \: of \: parallel \: sides) \times height⋆AreaofTrapezium=
2
1
(Sumofparallelsides)×height
\hookrightarrow \sf \: 182 {cm}^{2} = \dfrac{1}{2} (a + a + 16) \times 14 \: cm↪182cm
2
=
2
1
(a+a+16)×14cm
\hookrightarrow \sf \: 182 {cm}^{2} = \dfrac{1}{ \cancel2} (2a + 16) \times \cancel14↪182cm
2
=
2
1
(2a+16)×
1
4
\hookrightarrow \sf \: 182 {cm}^{2} = 7(2a + 16)↪182cm
2
=7(2a+16)
\hookrightarrow \sf \: 182 {cm}^{2} = 14a + 112↪182cm
2
=14a+112
\hookrightarrow \sf \: 14a = 182 - 112↪14a=182−112
\hookrightarrow \sf \: 14a = 70↪14a=70
\hookrightarrow \sf \: a = \dfrac{70}{14}↪a=
14
70
\hookrightarrow \sf \: a = \large \boxed{ \sf \: 5 \: cm}↪a=
5cm
Now,
\star \: \sf \: Measure \: of \: 1 \: parallel \: side = 5 \: cm⋆Measureof1parallelside=5cm
\begin{lgathered}\star \: \sf \: Other \: Parallel \: Side \: = 5 + 16 \\ = \sf \: 21 \: cm\end{lgathered}
⋆OtherParallelSide=5+16
=21cm
Answer:Total work done till now =1/2+1/3=5/6
Let the total work be x
=x-5/6=x/6
Value of X can be assumed as 1
Work she will do tomorrow =1/6
If you like Mark as brainy ✌✌✌✌✌✌