Math, asked by Manasmsd2895, 9 months ago

Repeated root of the equation 4x3-12x2-15x-4=0

Answers

Answered by syedZiahasan
4

Answer:

4x3-12x2+12x-4=0 

One solution was found :

                   x = 1

Step by step solution :

Step  1  :

Equation at the end of step  1  :

(((4 • (x3)) - (22•3x2)) + 12x) - 4 = 0

Step  2  :

Equation at the end of step  2  :

((22x3 - (22•3x2)) + 12x) - 4 = 0

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   4x3 - 12x2 + 12x - 4  = 

  4 • (x3 - 3x2 + 3x - 1) 

Checking for a perfect cube :

 4.2    x3 - 3x2 + 3x - 1  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  x3 - 3x2 + 3x - 1 

Answered by payalchatterje
0

Answer:

The repeated root of the given equation is 1.

Step-by-step explanation:

Given equation,

4 {x}^{3}  - 12 {x}^{2}  - 15x - 4 = 0

Let roots of this equation are a,a,b.

So, we can say

a + a + b =  \frac{12}{4}  = 3

2a + b = 3.....(1)

and

a \times a \times b =  \frac{4}{4}  = 1 \\  {a}^{2} b = 1......(2)

From equation (1) and (2),

2 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 3

2 {a}^{3}  - 3 {a}^{2}  + 1 = 0

(a - 1)(2 {a }^{2}  - a - 1) = 0

2 {a}^{2}  - a - 1 = 0

By solving this equation, we get

a =  \frac{1±3}{4}  =  \frac{4}{4}  \:  \: and \:  \:  \frac{ - 2}{4}  = 1 \:  \: and \:  \:  \frac{ - 1}{2}

When a=1

b =  \frac{1}{ {1}^{2} }  = 1

and when

a =  -  \frac{1}{2}

b=4

Therefore repeated root of the given equation is 1.

Similar questions