Math, asked by na6davnisanna, 1 year ago

Repeating decimal 10.363636...simplest fractional form p/q, find the value of p+q

Answers

Answered by mysticd
144
let x= 10.363636....-----(1)
multiply (1) with 100
100x =1036.363636....---(2)
subtract (1) from (2)
99x= 1026
x=1026/99
after cancellation
x=114/11=p/q

p+q=114+11=125
Answered by pinquancaro
97

Answer:

\frac{p}{q}=\frac{114}{11}

p+q=125      

Step-by-step explanation:

Given : Repeating decimal 10.363636...

To find : Simplest fractional form p/q, find the value of p+q?

Solution :

Let y=10.363636... ....(1)

Multiply both side by 100,

100y=1036.3636...... .....(2)

Subtract (1) and (2),

100y-y=(1036.3636......)-(10.363636...)

99y=1026

y=\frac{1026}{99}

y=\frac{114}{11}

So, The p/q form is \frac{p}{q}=\frac{114}{11}

Here, p=114 and q=11.

So, p+q=114+11=125.

Similar questions