Repeating decimal 10.363636...simplest fractional form p/q, find the value of p+q
Answers
Answered by
144
let x= 10.363636....-----(1)
multiply (1) with 100
100x =1036.363636....---(2)
subtract (1) from (2)
99x= 1026
x=1026/99
after cancellation
x=114/11=p/q
p+q=114+11=125
multiply (1) with 100
100x =1036.363636....---(2)
subtract (1) from (2)
99x= 1026
x=1026/99
after cancellation
x=114/11=p/q
p+q=114+11=125
Answered by
97
Answer:
p+q=125
Step-by-step explanation:
Given : Repeating decimal 10.363636...
To find : Simplest fractional form p/q, find the value of p+q?
Solution :
Let ....(1)
Multiply both side by 100,
.....(2)
Subtract (1) and (2),
So, The p/q form is
Here, p=114 and q=11.
So, p+q=114+11=125.
Similar questions