Physics, asked by alishakhan12, 10 months ago

reply the answer of this question with explainaition... then i follow you..thnks alot for replying the answer of my questions... ​

Attachments:

Answers

Answered by Anonymous
8

Solution :

Given :

▪ A particle of mass m is moving with a speed of v in a circular plane of radius r.

To Find :

▪ Centripetal force on the particle in terms of mass of particle, velocity of particle and rafmdius of circular path.

Calculation :

\tt\:1)\:Force=[M^1L^1T^{-2}]\\ \\ \tt\:2)\:Mass=[M^1L^0T^0]\\ \\ \tt\:3)\:velocity=[M^0L^1T^{-1}]\\ \\ \tt\:4)\:Radius=[M^0L^1T^0]\\ \\ \sf\:ATQ,\\ \\ \rightarrow\bf\:F\propto\:M^xV^yr^z\\ \\ \rightarrow\sf\:[M^1L^1T^{-2}]=[M^1]^x[L^1T^{-1}]^y[L^1]^z\\ \\ \rightarrow\sf\:[M^1L^1T^{-2}]=[M]^x[L]^{y+z}[T]^{-y}\\ \\ \star\bf\:x=1\\ \\ \star\bf\:y+z=1\\ \\ \star\bf\:y=2\\ \\ \rightarrow\sf\:y+z=1\\ \\ \rightarrow\sf\:2+z=1\\ \\ \star\bf\:z=-1\\ \\ \rightarrow\tt\:F\propto\:[M]^1[v]^2[r]^{-1}\\ \\ \therefore\boxed{\bf{\purple{F\propto\dfrac{Mv^2}{r}}}}

Similar questions