Science, asked by sheetalchoudhari35, 4 months ago

report on the commercial application of biotechnology and impact of biotechnology on agriculture​

Answers

Answered by anushka9217
0

Improved yield from crops.

Reduced vulnerability of crops to environmental stresses.

Increased nutritional qualities of food crops.

Improved taste, texture or appearance of food.

Reduced dependence on fertilizers, pesticides and other agrochemicals.

Production of vaccines.

The application of biotechnology in agriculture has resulted in benefits to farmers, producers, and consumers. Biotechnology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against disease.

For example, genetically engineered insect-resistant cotton has allowed for a significant reduction in the use of persistent, synthetic pesticides that may contaminate groundwater and the environment.

In terms of improved weed control, herbicide-tolerant soybeans, cotton, and corn enable the use of reduced-risk herbicides that break down more quickly in soil and are non-toxic to wildlife and humans. Herbicide-tolerant crops are particularly compatible with no-till or reduced tillage agriculture systems that help preserve topsoil from erosion.

Agricultural biotechnology has been used to protect crops from devastating diseases. The papaya ringspot virus threatened to derail the Hawaiian papaya industry until papayas resistant to the disease were developed through genetic engineering. This saved the U.S. papaya industry. Research on potatoes, squash, tomatoes, and other crops continues in a similar manner to provide resistance to viral diseases that otherwise are very difficult to control.

Biotech crops can make farming more profitable by increasing crop quality and may in some cases increase yields. The use of some of these crops can simplify work and improve safety for farmers. This allows farmers to spend less of their time managing their crops and more time on other profitable activities.

Biotech crops may provide enhanced quality traits such as increased levels of beta-carotene in rice to aid in reducing vitamin A deficiencies and improved oil compositions in canola, soybean, and corn. Crops with the ability to grow in salty soils or better withstand drought conditions are also in the works and the first such products are just entering the marketplace. Such innovations may be increasingly important in adapting to or in some cases helping to mitigate the effects of climate change.

The tools of agricultural biotechnology have been invaluable for researchers in helping to understand the basic biology of living organisms. For example, scientists have identified the complete genetic structure of several strains of Listeria and Campylobacter, the bacteria often responsible for major outbreaks of food-borne illness in people. This genetic information is providing a wealth of opportunities that help researchers improve the safety of our food supply. The tools of biotechnology have "unlocked doors" and are also helping in the development of improved animal and plant varieties, both those produced by conventional means as well as those produced through genetic engineering.

Similar questions