reposting question please solve this
Attachments:
Answers
Answered by
4
LHS = sin⁸θ-cos⁸θ
=(sin⁴θ)²-(cos⁴θ)²
=(sin⁴θ+cos⁴θ)(sin⁴θ-cos⁴θ)
={(sin²θ)²+(cos²θ)²}{(sin²θ)²-(cos²θ)²}
={(sin²θ+cos²θ)²-2sin²θcos²θ}{(sin²θ+cos²θ)(sin²θ-cos²θ)}
={(1)²-2sin²θcos²θ}{(1)(sin²θ-cos²θ)}
[∵, sin²θ+cos²θ=1]
=(sin²θ-cos²θ)(1-2sin²θcos²θ)
=RHS
∴ LHS = RHS
Hence proved.
Hope this helps you !!
# Dhruvsh
=(sin⁴θ)²-(cos⁴θ)²
=(sin⁴θ+cos⁴θ)(sin⁴θ-cos⁴θ)
={(sin²θ)²+(cos²θ)²}{(sin²θ)²-(cos²θ)²}
={(sin²θ+cos²θ)²-2sin²θcos²θ}{(sin²θ+cos²θ)(sin²θ-cos²θ)}
={(1)²-2sin²θcos²θ}{(1)(sin²θ-cos²θ)}
[∵, sin²θ+cos²θ=1]
=(sin²θ-cos²θ)(1-2sin²θcos²θ)
=RHS
∴ LHS = RHS
Hence proved.
Hope this helps you !!
# Dhruvsh
Answered by
1
☺☺☺ Hope this Helps ☺☺☺
See pic ↓↓↓
See pic ↓↓↓
Attachments:
Similar questions