Math, asked by Anonymous, 4 months ago

Represent √5 on no. line​

Answers

Answered by Anonymous
13

 \bf{\underline{Show \: That:-}}

\sf \red{\sqrt{5}} on a no. line.

 \bf{\underline{Solution:-}}

Let, a ∆AOB

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.3mm} \qbezier( - 0.4,2)(2.8,4)(2.8,4)\qbezier(2.8,2)(2.8,4)(2.8,4)\put(0.7,3.2){\huge?}\put(2.9,2.8){$\bf 1$}\put(1.4,1.7){$\bf 2$}\put(2.7,1.7){$\bf A$}\put(2.7,4.1){$\bf B$}\put( - 0.7,1.7){$\bf O$} \qbezier( -0.4,2)(2.8,2)(2.8,2) \end{picture}

we, know that

 \huge{\boxed{\sf H^2 = P^2 + B^2}} \quad  \bigg\lgroup{ \sf Pythagoras\: Theorem}  \bigg\rgroup

 \sf \dashrightarrow OB^2 = BA^2 + OA^2 \\  \\

where,

  • BA = 1
  • OA = 2

So,

 \sf \dashrightarrow OB^2 = BA^2 + OA^2 \\  \\

 \sf \dashrightarrow OB^2 = 1^2 + 2^2 \\  \\

 \sf \dashrightarrow OB^2 = 1+ 4\\  \\

 \sf \dashrightarrow OB^2 = 5\\  \\

 \sf \dashrightarrow OB =  \sqrt{5}\\  \\

  \small{\sf \therefore \underline{OB =  \sqrt{5}}}\\  \\

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.3mm} \qbezier( - 0.4,2)(2.8,4)(2.8,4)\qbezier(2.8,2)(2.8,4)(2.8,4)\put(0.7,3.2){$\bf \sqrt{5} $}\put(2.9,2.8){$\bf 1$}\put(1.4,1.7){$\bf 2$}\put(2.7,1.7){$\bf A$}\put(2.7,4.1){$\bf B$}\put( - 0.7,1.7){$\bf O$} \qbezier( -0.4,2)(2.8,2)(2.8,2) \end{picture}

Now, Let's represent it on no. line

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.3mm} \put(2,2){\vector(1, 0){3}} \multiput( - 0.4,1.8)(1.6,0){4}{\line(0,1){0.4}}\put(2,2){\vector(-1, 0){3}}\qbezier( - 0.4,2)(2.8,4)(2.8,4)\qbezier(2.8,2)(2.8,4)(2.8,4)\qbezier(2.8,4)(3.6,3.2)(3.4,2)\put( - 0.5,1.5){$\bf 0$}\put(1.1,1.5){$\bf 1$}\put(2.7,1.5){$\bf 2$}\put(4.3,1.5){$\bf 3$}\put(0.7,3.2){$\bf \sqrt{5} $} \thicklines\put(3.9,2.7){\vector(-1,-2){0.3}}\put(3.7,2.8){$\bf \sqrt{5} $}\put(2.5,2.8){$\bf 1$}\put(1.4,2.1){$\bf 2$}\put(3.3,1.6){$\bf  P$}\put(2.9,2.1){$\bf A$}\put(2.7,4.1){$\bf B$}\put( - 0.7,2.2){$\bf O$} \put(3.4,2){\circle*{0.2}} \end{picture}

Construction:-

\underline{\pink{\sf Step :1}} Draw a no. line marked from 0 to 3.

\underline{\pink{\sf Step :2}} Draw an arc of 1cm from point 2

\underline{\pink{\sf Step :3}} Join A and B.

\underline{\pink{\sf Step :4}} Join B and O also.

\underline{\pink{\sf Step :5}} Open compass from 0 to B and draw an arc.

\underline{\pink{\sf Step :6}} Where the arc meets on line name that point as P.

\underline{\pink{\sf Step :7}} Hence, √5 was represented on number line.


Anonymous: Splendid!
MisterIncredible: Good !
Answered by TheRose06
19

Answer:-

Let, a ∆AOB

⠀⠀⠀H²=P²+B² (Pythagoras theorem)

=> OB²=BA²+OA²

where,

⠀⠀• BA=7

⠀⠀•OA=2

So,

=> OB² = BA²+OA²

=> OB² = 1²+2²

=> OB² = 1+4

=> OB² = 5

=> OB = √5

Construction:-

• Draw a number line marked 0 to 3.

• Draw an Arc from 1cm to 2cm.

• Then join A and B.

• Later join B and O.

• Open compass from 0 to B and then draw an Arc.

• Now where both are met name that point P.

• hence √5 is represented on a number line.


MisterIncredible: Good !
Similar questions