Math, asked by guptaananya2005, 9 days ago

Represent in polar form \frac{1 + i}{1 - i}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:\dfrac{1 + i}{1 - i}

Let we reduce this complex number to standard form by using Method of Rationalization.

So,

\rm \:  =  \: \dfrac{1 + i}{1 - i}  \times \dfrac{1 + i}{1 + i}

\rm \:  =  \: \dfrac{ {(1 + i)}^{2} }{ {1}^{2}  -  {i}^{2} }

\rm \:  =  \: \dfrac{1 +  {i}^{2}  + 2i}{1 - ( - 1)}

\rm \:  =  \: \dfrac{1 - 1  + 2i}{1 - ( - 1)}

\rm \:  =  \: \dfrac{ 2i}{2}

\rm \:  =  \: i

\rm \implies\:\dfrac{1 + i}{1 - i}  = i

Now, we reduce this complex number to Polar form.

Let assume that

\rm \implies\:\dfrac{1 + i}{1 - i}  = i = r(cos \theta  + i \: sin \theta ) -  -  - (1)

can be rewritten as

\rm :\longmapsto\:i = rcos \theta  + i \: rsin \theta

So, on comparing Real and Imaginary parts, we get

\red{\rm :\longmapsto\:rcos \theta  = 0 -  -  - (2)}

and

\red{\rm :\longmapsto\:rsin \theta  = 1 -  - (3)}

Now, Squaring equation (2) and (3) and adding, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2} \theta  +  {r}^{2} {sin}^{2} \theta  = 0 + 1

\rm :\longmapsto\: {r}^{2} ({cos}^{2} \theta  +  {sin}^{2} \theta ) =  1

\rm :\longmapsto\: {r}^{2} =  1

\bf\implies \:r = 1

On substituting the value of r in equation (2) and (3), we get

\rm :\longmapsto\:cos \theta  = 0 \:  \: and \:  \: sin \theta  = 1

\bf\implies \: \theta  = \dfrac{\pi}{2}

So, Equation (1) can be rewritten as

\rm :\longmapsto\:\dfrac{1 + i}{1 - i}  = cos\bigg[\dfrac{\pi}{2} \bigg] + i \: sin\bigg[\dfrac{\pi}{2} \bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions