represent in polar form z=cosa+sina+i (sina-cosa),a belongs (0,2pi)
Answers
Answered by
10
For a complex no written as
z= x + iy
we know that it can be written as polar form as r(cos ∅ + isin∅)
where r = √x²+y²
and ∅ = tan⁻¹ y/x
Hence , when
z = (cosa + sina) + i (sina - cosa)
we have r = √(cosa+sina)² + (sina - cosa)²
= √(cos²a + sin²a + 2cosasina + sin²a + cos²a -2cosasina
=√1+1
=√2
To find ∅,
tan ∅ = (sina - cosa)/(cosa + sina)
=> sin ∅/ cos∅ = (sina - cosa)/(cosa + sina)
cross multiplying and arranging we get ,
sin∅cosa - cos∅sina = -cos∅cosa + sin∅sina
=>sin(∅-a) = - cos(∅-a)
=> tan(∅-a) = -1
=> ∅-a = 3π/4 or 7π/4
=> ∅ = 3π/4 + a or 7π/4 + a
Hence z can be written as ,
z= √2(cos(3π/4 + a) + i sin(3π/4 + a))
or
z = √2(cos(7π/4 + a) + i sin(7π/4 + a))
Similar questions