Math, asked by anaminamdar9, 6 months ago

Represent the 4+4√3i complex number in the polar form​

Answers

Answered by Anonymous
11

Answer:

this may help u....... thank u

Attachments:
Answered by krishnaanandsynergy
5

Answer:

Here we can find the polar form for the given complex number 4+4\sqrt{3}i.

Final Answer is: 8(cos\frac{\pi }{3} +isin\frac{\pi }{3})

Step-by-step explanation:

from the given question,

     complex number Z=4+4\sqrt{3}i           ----------------(1)

Polar form of the complex number is,

                                  Z=r(cos\theta+isin\theta)  ----------------(2)    

Now equate equation(1) and equation(2). Then we get the following equation.

                       4+4\sqrt{3}i = r(cos\theta+i sin\theta)  

Here we should find the value of r and \theta.

From the above equation we can get the following values. That is,

                              r cos\theta=4    

                                cos\theta=\frac{4}{r}         -----------------(3)

                              r sin\theta=4\sqrt{3}  

                                sin\theta=\frac{4\sqrt{3}}{r}     -----------------(4)

For find the \theta value, we should divide equation(3) by equation(4)

                                 \frac{sin\theta}{cos\theta} = \frac{(4\sqrt{3}/r )}{4/r}

It can be written as, tan\theta=\frac{4\sqrt{3} }{r} * \frac{r}{4}    (Trigonometric Formula:tan \theta=\frac{sin\theta}{cos\theta})

here we cancel r and 4 in the numerator and denominator. Then we get the following equation.

                                 tan\theta=\sqrt{3}

Using Trigonometric table,

                                 tan\theta=\sqrt{3} = tan \frac{\pi }{3}

So that,                theta  \theta=\frac{\pi }{3}

Next we should find the value of r. For that we squared and add equation(3) and equation(4).

                    sin^{2}\theta+ cos^{2}\theta = (\frac{4\sqrt{3} }{r} )^{2} + (\frac{4}{r} )^{2}

                                       1 = \frac{16}{r ^{2}}(\sqrt{3} )^2 + \frac{16}{r^{2}}          (sin^{2}\theta+ cos^{2}\theta = 1)

                                       1 = \frac{16}{r ^{2}}({3} ) + \frac{16}{r^{2}}               (\sqrt{3} ^2=3)

                                       1 = \frac{48}{r ^{2}}  + \frac{16}{r^{2}}                    (Add the numerator)

                                       1 = \frac{64}{r ^{2}}

                                      r ^{2}= 64

                                        r=\sqrt{64}

                        value of  r=8

Now we should apply the value of r and \theta in equation(2)

                                       Z=r(cos\theta+isin\theta)

Polar form of the complex number

                                       Z=8(cos\frac{\pi }{3} + i sin\frac{\pi }{3} )                            

Similar questions