Math, asked by jvkumar, 10 months ago

Represent the complex number (-1-√3i) in the polar form

Answers

Answered by Anonymous
19

\textbf{\underline{\underline{According\:to\:the\:Question}}}

Assumption

z = (-1 - √3i)

It is clear that (-1 - √3i) lies in 3 Quadrant

z = r(cosθ + isinθ)

Now,

rcosθ = -1

rsinθ = -√3

Now here,

\textbf{\underline{Squarring\;both\;sides :-}}

r² = 4

r = √4

r = 2

Hence,

{\boxed{\sf\:{cos\theta=\dfrac{-1}{2}}}}

Also,

{\boxed{\sf\:{sin\theta=\dfrac{-\sqrt{3}}{2}}}}

tanθ = √3

tanα = |tanθ| = √3

{\boxed{\sf\:{\alpha=\dfrac{\pi}{3}}}}

Then,

\textbf{\underline{It\;lies\;in\;3\;Quadrant}}

Hence,

θ = (π - α)

{\boxed{\sf\:{\dfrac{\pi}{3}-\pi=\dfrac{-2\pi}{3}}}}

Thus,

\Large{\boxed{\sf\:{z=2[cos (\dfrac{-2 \pi}{3})+isin(\dfrac{-2 \pi}{3})}}}

Answered by Anonymous
56

\huge{\boxed{\mathbb{\blue{Polar\:Form}}}}

z = 2( \cos( \frac{2\pi}{3} - i \sin( \frac{2\pi}{3} )  )  \\

Here r = |z|

 |z|  =  \sqrt{ {re(z)}^{2} +  {im(z)}^{2}  }  \\

 |z|  =  \sqrt{ { - 1}^{2} + ( {  - \sqrt{ 3} }^{2})  }

 |z|  =  \sqrt{1 + 3}  \\

 |z|  = 2 \\

Let alpha be the acute angle given by tan alpha

 \tan( \alpha )  =   | \frac{im(z)}{re(z)} |  \\

 \tan( \alpha )  =  | \frac{  - \sqrt{3} }{ - 1} |  \\

 \tan( \alpha )  =  \sqrt{3}  \\

Clearly (-1,-√3 ) is in 3rd quadrant .

Therefore argument is given by

 \theta =  - (\pi -  \alpha ) \\

 \theta =  - (\pi -  \frac{\pi}{3} ) \\

 \theta =  -  \frac{2\pi}{3}  \\

Now polar form of compex number is

z = r( \cos( \theta + i \sin( \theta) )  \\

z = 2( \cos( \frac{2\pi}{3} - i \sin( \frac{2\pi}{3} )  )  \\

hope it helps

Similar questions