Math, asked by VAISHVItheBEATboxer, 4 months ago

Represent the following complex no. in the standard form x+iy÷

Attachments:

Answers

Answered by jaidansari248
1

as \: we \: know \: that \\ re {}^{ \theta i}  = r(  \cos( \theta)  + i \sin( \theta) ) \\ question \\  \sqrt{2} (cos(  \frac{ - \pi}{4} ) + i \sin( \frac{ - \pi}{4} ) ) \\ so \\ r =  \sqrt{2}  \\  \theta =  \frac{ - \pi}{4}  \\ then \\ \sqrt{2} (cos(  \frac{ - \pi}{4} ) + i \sin( \frac{ - \pi}{4} ) ) \\  =  \sqrt{2}  \times e {}^{ \frac{ - \pi}{ 4 } i}  \\  =  \sqrt{2} e {}^{ \frac{ - \pi i}{4} }  \: is \: your \: answer \\ if \: you \: want \: to \: find \\ the \: value \:  \\ then \\  \sqrt{2}  \times  {({e}^{\pi i})  }^{  \frac{ - 1}{4} }  \\ where \:  {e}^{\pi i}  =  - 1 =  {i}^{2}  \\  \sqrt{2}  \times  {i}^{2 \times  \frac{ - 1}{4} }  \\  =  \sqrt{2}  \times  {i}^{  \frac{ - 1}{2} }  \\  =  \sqrt{2}  \times  \frac{1}{ {}^{ {i}^{ \frac{1}{2} } } } \\  =  \sqrt{2}   \times  \frac{1}{ {i}^{ \frac{1}{2} } }  \times  \frac{ {i}^{ \frac{1}{2} } }{  {i}^{\frac{1}{2} }}  \\  =  \sqrt{2 } \times  \frac{ \sqrt{i} }{i}


VAISHVItheBEATboxer: wrong ans
jaidansari248: sorry for that
VAISHVItheBEATboxer: it's okay
VAISHVItheBEATboxer: the answer at the back of the book seems out of nowhere
Similar questions