Represent the following situations in the form of quadratic equations:
The area of a rectangular plot is 528 m^2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
Answers
Let us consider,
Breadth of the rectangular plot = x m
Thus, the length of the plot = (2x + 1) m.
As we know,
Area of rectangle = length × breadth = 528 m^2
Putting the value of length and breadth of the plot in the formula, we get,
(2x + 1) × x = 528
⇒ 2x^2 + x =528
⇒ 2x^2 + x – 528 = 0
Therefore,
the length and breadth of plot,
satisfies the quadratic equation, 2x^2 + x – 528
= 0,
which is the required representation of the problem mathematically.
(i) Let us consider,
The breadth of the rectangular plot is x m.
Thus, the length of the plot = (2x + 1) m
As we know,
Area of rectangle = length × breadth = 528 m2
Putting the value of length and breadth of the plot in the formula, we get,
(2x + 1) × x = 528
⇒ 2x^2 + x = 528
⇒ 2x^2 + x – 528 = 0
Hence, 2x2 + x – 528 = 0, is the required equation which represents the given situation.
(ii) Let us consider,
speed of train = x km/h
And
Time taken to travel 480 km = 480 (x) km/h
As per second situation, the speed of train = (x – 8) km/h
As given, the train will take 3 hours more to cover the same distance.
Therefore, time taken to travel 480 km = (480/x) + 3 km/h
As we know,
Speed × Time = Distance
Therefore,
(x – 8)[(480/x) + 3] = 480
⇒ 480 + 3x – (3840/x) – 24 = 480
⇒ 3x – (3840/x) = 24
⇒ 3x^2 – 24x – 3840 = 0
⇒ x^2 – 8x – 1280 = 0