Math, asked by papafairy143, 4 days ago

Represent the solution on number line

 \frac{ {8x}^{2}  + 16x - 51}{(2x - 3)(x + 4)}  < 3 \\

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: \dfrac{ {8x}^{2} + 16x - 51}{(2x - 3)(x + 4)} < 3 \\

can be rewritten as

\rm \: \dfrac{ {8x}^{2} + 16x - 51}{(2x - 3)(x + 4)} - 3 < 0 \\

\rm \: \dfrac{ {8x}^{2} + 16x - 51 - 3(2x - 3)(x + 4)}{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ {8x}^{2} + 16x - 51 - 3(2 {x}^{2} + 8x  - 3x - 12)}{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ {8x}^{2} + 16x - 51 - 3(2 {x}^{2} + 5x - 12)}{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ {8x}^{2} + 16x - 51 - 6 {x}^{2} - 15x + 36}{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ {2x}^{2} +x -15 }{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ {2x}^{2} +6x - 5x -15 }{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{ 2x(x + 3) - 5(x + 3)}{(2x - 3)(x + 4)}  < 0 \\

\rm \: \dfrac{(x + 3)(2x - 5)}{(2x - 3)(x + 4)}  < 0 \\

So, breaking points are

\rm \: x =  - 4, \:  - 3, \:  \dfrac{3}{2}, \:  \dfrac{5}{2}  \\

So, sign of expression in intervals are as

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval & \bf Sign \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ( -  \infty , - 4) & \sf  + ve \\ \\ \sf ( - 4, - 3) & \sf  - ve \\ \\ \sf \bigg( - 3,\dfrac{3}{2} \bigg) & \sf  + ve\\ \\ \sf \bigg(\dfrac{3}{2} ,\dfrac{5}{2}  \bigg)  & \sf  - ve\\ \\ \sf \bigg(\dfrac{5}{2} , \infty \bigg)  & \sf  + ve \end{array}} \\ \end{gathered} \\

So,

\rm\implies \:\boxed{ \rm{ \rm  \:x \in \: ( - 4, - 3) \:  \cup \: \bigg(\dfrac{3}{2},  \frac{5}{2}   \bigg)  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

If a and b are real positive numbers such that a < b, then

\boxed{\rm{ \: (x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \: }} \\

\boxed{\rm{ \: (x - a)(x - b) \leqslant  0 \:  \: \rm\implies \:a \leqslant x \leqslant b \: }} \\

\boxed{\rm{ \: (x - a)(x - b) \geqslant  0 \:  \: \rm\implies \:x \leqslant a \:  \: or \: x \geqslant b \: }} \\

\boxed{\rm{ \: (x - a)(x - b)  &gt;   0 \:  \: \rm\implies \:x  &lt;  a \:  \: or \: x  &gt;  b \: }} \\

Attachments:

amansharma264: Excellent
Similar questions