Math, asked by debjit08, 9 hours ago

Represent three successive discounts of 10%,(25/3)% and (20/3)% by a single discount percentage.​

Answers

Answered by mohantyrupalita76
0

Answer:

Given:

The successive discounts are 8%, 15% and 12%.

Concept used:

Using the concept of percentage.

Calculation:

Let the initial value be 100.

Discounted value = (100 – 8)% of (100 – 15)% of (100 – 12)% of 100

⇒ Discounted value = 92% of 85% of 88% of 100

⇒ Discounted value = 92/100 × 85/100 × 88/100 × 100

⇒ Discounted value = 68.816

Equivalent discount = (100 – Discounted value)/Initial value × 100

⇒ Equivalent discount = (100 – 68.816)/100 × 100

⇒ Equivalent discount = 31.184%

∴ A single discount equivalent to three successive discounts is 31.184%.

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that marked price of an article be Rs 100.

According to statement, three successive discounts of 10%, \dfrac{25}{3}  % and \dfrac{20}{3}  % is given on article.

We know,

Selling Price of an article if successive discounts of x %, y % and z % is applicable on marked price is given by

\boxed{ \rm{ \:Selling \: Price = Marked \: Price\bigg(1 - \dfrac{x}{100}  \bigg) \bigg(1 -  \frac{y}{100}  \bigg) \bigg(1 -  \frac{z}{100}\bigg)  \: }} \\

So, on substituting the values, we get

\bf \: Selling \: Price \\

\rm \:  =  \: 100\bigg(1 - \dfrac{10}{100}  \bigg)\bigg(1 - \dfrac{25}{300}  \bigg)\bigg(1 - \dfrac{20}{300}  \bigg)  \\

\rm \:  =  \: 100\bigg(1 - \dfrac{1}{10}  \bigg)\bigg(1 - \dfrac{1}{12}  \bigg)\bigg(1 - \dfrac{1}{15}  \bigg)  \\

\rm \:  =  \: 100\bigg(\dfrac{10 - 1}{10}  \bigg)\bigg(\dfrac{12 - 1}{12}  \bigg)\bigg(\dfrac{15 - 1}{15}  \bigg)  \\

\rm \:  =  \: 100\bigg(\dfrac{9}{10}  \bigg)\bigg(\dfrac{11}{12}  \bigg)\bigg(\dfrac{14}{15}  \bigg)  \\

\rm \:  =  \: 77 \\

\rm\implies \:\bf \: Selling \: Price  \:  =  \: Rs \: 77\\

So,

\bf\implies \:Single \: discount \:  =  \: (100 - 77)\% = 23\% \:  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions