Math, asked by DivyaRaval, 2 months ago

Requesting to solve this SUM ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{ |2 {x}^{2} + x - 1 |(2x - 1) }{( {x}^{2} - 1)(2x - 1) ^{2}  }  \leqslant 0 \\

  \implies \: \frac{ |2 {x}^{2} +2 x - x - 1 | }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

  \implies \: \frac{ |2 x(x + 1) -1( x  +  1)| }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

  \implies \: \frac{ |(2 x - 1)(x + 1) | }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

Now, consider the following cases,

CASE 1: When x < -1:

then (2x - 1) <0 and (x + 1) <0, so,

  \implies \: \frac{  (2 x - 1)(x + 1)  }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

  \implies \: \frac{ 1  }{( x- 1)   }  \leqslant 0 \\

  \implies \: x \leqslant 1 \\

From this case, we canconclude that the value of x ≤ -1.

CASE 2: When -1 ≤ x ≤ \frac{1}{2} \\:

then, (x + 1) ≥0 and (2x - 1) <0

so,

  \implies \: \frac{   - (2 x - 1)(x + 1)  }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

  \implies \: \frac{  (2 x - 1)(x + 1)  }{( x- 1)(x + 1)(2x - 1)   }  \geqslant 0 \\

  \implies \: \frac{ 1 }{( x- 1)   }  \geqslant 0 \\

 \implies \: x \geqslant 1

Previously we considered  x \in [-1, \frac{1}{2}) \\ but we got x ≥ 1, so in this case  x \in \phi \\

CASE 3: When  x \geqslant \frac{1}{2} \\:

then, (2x - 1) ≥ 0 and (x + 1) > 0

so,

  \implies \: \frac{  (2 x - 1)(x + 1)  }{( x- 1)(x + 1)(2x - 1)   }  \leqslant 0 \\

  \implies \: \frac{  1 }{( x- 1)}  \leqslant 0 \\

 \implies \: x \leqslant 1

so, in this case  x \in [\frac{1}{2}, 1) \\

So, from these cases we get,

x \in( -  \infty ,- 1] \cup [\frac{1}{2}, 1)

Similar questions