resistance of a wire is 10 ohm if we increase the area of wire by 3 times than the initial one. Calculate the new resistance of the wire.
Answers
Answered by
25
Given
Original resistance R = 10 ohm
Let be length = l and area of cross section be a.
So ,resistance be
![R= \rho \times \frac{length}{area} R= \rho \times \frac{length}{area}](https://tex.z-dn.net/?f=+R%3D+%5Crho+%5Ctimes+%5Cfrac%7Blength%7D%7Barea%7D)
![10 = \rho \times \frac{l}{a} 10 = \rho \times \frac{l}{a}](https://tex.z-dn.net/?f=+10+%3D+%5Crho+%5Ctimes+%5Cfrac%7Bl%7D%7Ba%7D)
According to question its given ,
The area increases by 3 times,
So , new area will be![a_2 = 3a a_2 = 3a](https://tex.z-dn.net/?f=+a_2+%3D+3a)
length will be decreased by =![l_2 = \frac{1}{3} l_2 = \frac{1}{3}](https://tex.z-dn.net/?f=+l_2+%3D+%5Cfrac%7B1%7D%7B3%7D)
So new resistance will be![R_2 R_2](https://tex.z-dn.net/?f=+R_2)
![R_2 = \rho \times \frac{lenght }{l<br /><br />area} R_2 = \rho \times \frac{lenght }{l<br /><br />area}](https://tex.z-dn.net/?f=+R_2+%3D+%5Crho+%5Ctimes+%5Cfrac%7Blenght+%7D%7Bl%3Cbr+%2F%3E%3Cbr+%2F%3Earea%7D)
![R_2 = \rho \times { \frac{\frac{l}{3}}{3a}} R_2 = \rho \times { \frac{\frac{l}{3}}{3a}}](https://tex.z-dn.net/?f=+R_2+%3D+%5Crho+%5Ctimes+%7B+%5Cfrac%7B%5Cfrac%7Bl%7D%7B3%7D%7D%7B3a%7D%7D)
![R_2 = \rho \times \frac{l }{9a} R_2 = \rho \times \frac{l }{9a}](https://tex.z-dn.net/?f=+R_2+%3D+%5Crho+%5Ctimes+%5Cfrac%7Bl+%7D%7B9a%7D)
On dividing original resistance by new resistance.
![\frac{R}{R_2}= \frac{ \rho \times \frac{l}{a}}{\rho \times \frac{l }{9a}} \frac{R}{R_2}= \frac{ \rho \times \frac{l}{a}}{\rho \times \frac{l }{9a}}](https://tex.z-dn.net/?f=+%5Cfrac%7BR%7D%7BR_2%7D%3D+%5Cfrac%7B+%5Crho+%5Ctimes+%5Cfrac%7Bl%7D%7Ba%7D%7D%7B%5Crho+%5Ctimes+%5Cfrac%7Bl+%7D%7B9a%7D%7D)
![\frac{10}{R_2}= \frac{ \cancel{ \rho} \times \frac{l}{a}}{ \cancel{ \rho} \times \frac{l }{9a}} \frac{10}{R_2}= \frac{ \cancel{ \rho} \times \frac{l}{a}}{ \cancel{ \rho} \times \frac{l }{9a}}](https://tex.z-dn.net/?f=+%5Cfrac%7B10%7D%7BR_2%7D%3D+%5Cfrac%7B+%5Ccancel%7B+%5Crho%7D+%5Ctimes+%5Cfrac%7Bl%7D%7Ba%7D%7D%7B+%5Ccancel%7B+%5Crho%7D+%5Ctimes+%5Cfrac%7Bl+%7D%7B9a%7D%7D)
![\frac{10}{R_2}= \frac{l}{a} \times \frac{9a}{l} \frac{10}{R_2}= \frac{l}{a} \times \frac{9a}{l}](https://tex.z-dn.net/?f=+%5Cfrac%7B10%7D%7BR_2%7D%3D+%5Cfrac%7Bl%7D%7Ba%7D+%5Ctimes+%5Cfrac%7B9a%7D%7Bl%7D)
![\frac{10}{R_2}= \frac{ \cancel{l}}{ \cancel{a}} \times \frac{9 \cancel{a}}{\cancel{l}} \frac{10}{R_2}= \frac{ \cancel{l}}{ \cancel{a}} \times \frac{9 \cancel{a}}{\cancel{l}}](https://tex.z-dn.net/?f=+%5Cfrac%7B10%7D%7BR_2%7D%3D+%5Cfrac%7B+%5Ccancel%7Bl%7D%7D%7B+%5Ccancel%7Ba%7D%7D+%5Ctimes+%5Cfrac%7B9+%5Ccancel%7Ba%7D%7D%7B%5Ccancel%7Bl%7D%7D)
![\frac{10}{R_2}= \frac{9}{1} \frac{10}{R_2}= \frac{9}{1}](https://tex.z-dn.net/?f=+%5Cfrac%7B10%7D%7BR_2%7D%3D+%5Cfrac%7B9%7D%7B1%7D)
on cross multipying,
![\frac{10}{9} = R_2 \frac{10}{9} = R_2](https://tex.z-dn.net/?f=+%5Cfrac%7B10%7D%7B9%7D+%3D+R_2)
Hence , the new resistance will be one- ninth of the original one.
Original resistance R = 10 ohm
Let be length = l and area of cross section be a.
So ,resistance be
According to question its given ,
The area increases by 3 times,
So , new area will be
length will be decreased by =
So new resistance will be
On dividing original resistance by new resistance.
on cross multipying,
Hence , the new resistance will be one- ninth of the original one.
kskssk69:
hi
Answered by
11
Formula for resistance is as follows:
resistance(R) = restivity(r) x Length (L)/ Area (A)
R=rL/A
When the length increases by three, the cross section will reduce by three. Hence;
the Length will be 3L
while area= A/3
New resistance will be r3L/(A/3) = r9L/A
If rL/A = 10ohms
Then 9(rL/A)= 10 x9 rL/A x(A/rL)
=90
Therefore the new resistance = 90ohm
Similar questions