Math, asked by karthik83, 1 year ago

resolve 1-2x/3+2x-x^2 into partial fractions

Answers

Answered by abhi178
11

\frac{1-2x}{3+2x-x^2}\\\\=\frac{2x-1}{x^2-2x-3}\\\\=\frac{2x-1}{x^2-3x+x-3}\\\\=\frac{2x-1}{(x-3)(x+1)}

now, Let
\frac{2x-1}{(x-3)(x+1)}=\frac{A}{(x-3)}+\frac{B}{(x+1)}

for finding value of A ,
\frac{2x-1}{(x-3)(x+1)}\times\:(x-3)=\frac{A}{(x-3)}\times\:(x-3)\\\\\frac{2x-1}{(x+1)}=A_{x=3}
A =  \frac{2 \times 3 - 1}{3 + 1}  =  \frac{5}{4}

similarly for finding value of B
\frac{2x-1}{(x-3)}=B_{x=-1}
hence,

B = \frac{2\times\:-1-1}{-1-3}=\frac{-3}{-4}

hence,

\frac{1-2x}{3+2x-x^2}=\frac{5}{4(x-3)}+\frac{3}{4(x+1)}<br />

kvnmurty: Excellent method and solution
abhi178: thank you :)
Similar questions