Math, asked by jadalasaicharan30, 6 months ago

resolve 2x-1 /(x-1)(2x+3) into partial fractions​

Answers

Answered by mathdude500
26

Answer:

 \frac{2x - 1}{(x - 1)(2x + 3)}  =  \frac{a}{x - 1}  +  \frac{b}{2x + 3}  \\ 2x - 1 = a(2x + 3) + b(x - 1) \\ put \: x = 1 \\ we \: get \\ 2 - 1 = a(2 + 3) \\ a =  \frac{1}{5}  \\  \\ put \: x \:  =  \frac{ - 3}{2}  \\ we \: get \\  - 3 - 1 = b( \frac{ - 3}{2}  - 1) \\  - 4 =   \frac{ - 5b}{2}  \\ b =  \frac{8}{5}  \\  \\ so \:  \frac{2x  - 1}{(x - 1)(2x + 3)}  =  \frac{ \frac{1}{5} }{x - 1}  +  \frac{ \frac{8}{5} }{2x + 3}

Answered by junaida8080
17

Answer:

\frac{2x-1}{(x-1)(2x+3)}=\frac{\frac{1}{5} }{x-1}+\frac{\frac{8}{5} }{2x+3}

Step-by-step explanation:

To convert the given expression into partial fractions, we use the following method

\frac{2x-1}{(x-1)(2x+3)} = \frac{a}{x-1} +\frac{b}{2x+3}

(2x-1)=a(2x+3)+b(x-1)

Put x=1 so that we can get the value of a.

2(1)-1=a(2(1)+3)+b(1-1)

2-1=a(2+3)+0

1=5a

a=\frac{1}{5}.

Put x=-\frac{3}{2} so that we can get the value of b.

2(-\frac{3}{2} )-1=a(2(-\frac{3}{2} +3))+b(-\frac{3}{2} -1)

-4=0+b(-\frac{5}{2} )

b=\frac{8}{5}

So the given expression becomes \frac{2x-1}{(x-1)(2x+3)}=\frac{\frac{1}{5} }{x-1}+\frac{\frac{8}{5} }{2x+3}.

Similar questions