Resolve (2x - 5)/ (x+3)(x+1)^2 into partial fractions.
Answers
Answered by
0
Answer:
Correct option is B)
Let
(x+3)(x+1)
2
(2x−5)
=
x+3
A
+
x+1
B
+
(x+1)
2
C
⇒2x−5=A(x+1)
2
+B(x+1)(x+3)+C(x+3)
⇒2x−5=A(x
2
+2x+1)+B(x
2
+4x+3)+C(x+3)
On comparing coefficients
0=A+B,2=2A+4B+C,−5=A+3B+3C
⇒A=−
4
11
,B=
4
11
,C=−
2
7
Hence,
(x+3)(x+1)
2
(2x−5)
=−
4(x+3)
11
+
4(x+1)
11
−
2(x+1)
2
7
Hence, option 'B' is correct.
please mark me as brain list please
Answered by
0
Answer:
your answer;
(2x-5)/((x+3)(x+1)^2)=(-11/(4(x+3)))+(11/(4(x+1)))-(7/(2(x+1)^2))
Step-by-step explanation:
Similar questions