resolve into factors:(a^3c+b^3a+bc^3-b^3c-c^3a-a^3b)
Answers
Answered by
0
Answer:
Let
f(a)=ab3−a3b+a3c−ac3+bc3−b3c.
If a=b, then f(a)=0. Therefore
(a−b)∣f(a). Analogously
(a−c)∣f(a); so,
(a−b)(a−c)∣f(a). But we can take it directly:
ab3−a3b+a3c−ac3+bc3−b3c
=ab(b2−a2)+c3(b−a)−c(b3−a3)=
=ab(b−a)(b+a)+c3(b−a)−c(b−a)(b2+ba+a2)=
=(b−a)[ab(b+a)+c3−cb2−cab−ca2]
ab(b+a)+c3−cb2−cab−ca2
=ab(a+b)+c(c2−a2)−cb(a+b)=
=(a−c)b(a+b)−c(a−c)(a+c)
=(a−c)[b(a+b)−c(a+c)]
And then
b(a+b)−c(a+c)=ba+b2−ca−c2
=a(b−c)+(b2−c2)=
=a(b−c)+(b+c)(b−c)=(b−c)(a+b+c).
So,
ab3−a3b+a3c−ac3+bc3−b3c
=(b−a)(a−c)(b−c)(a+b+c)
Similar questions
World Languages,
17 days ago
English,
1 month ago
Political Science,
8 months ago
Math,
8 months ago