Resolve into factors: b(a+c) + c(a+b)+b^2+c^2.
Answers
Answered by
5
Answer:
Answered by
1
Answer:
Answer:
\begin{gathered}a^2(b - c) + b^2(c-a) + c^2(a - b) \\ = a^2b - a^2c + b^2c - b^2a +c^2a-c^2b \\ =a^2b - b^2a - a^2c + b^2c + c^2a -c^2b \\ = ab(a - b) - c(a^2 - b^2) +c^2(a - b) \\ =ab(a - b) -c(a - b)(a + b) +c^2(a - b) \\ =(a - b)(ab - c(a + b) +c^2) \\ =(a - b)(ab - cb -ca + c^2) \\ = (a - b)(b(a-c) -c(a-c)) \\ =(a-b)(b-c)(a-c)\end{gathered}
a
2
(b−c)+b
2
(c−a)+c
2
(a−b)
=a
2
b−a
2
c+b
2
c−b
2
a+c
2
a−c
2
b
=a
2
b−b
2
a−a
2
c+b
2
c+c
2
a−c
2
b
=ab(a−b)−c(a
2
−b
2
)+c
2
(a−b)
=ab(a−b)−c(a−b)(a+b)+c
2
(a−b)
=(a−b)(ab−c(a+b)+c
2
)
=(a−b)(ab−cb−ca+c
2
)
=(a−b)(b(a−c)−c(a−c))
=(a−b)(b−c)(a−c)
Similar questions
English,
2 months ago
Computer Science,
2 months ago
Math,
5 months ago
English,
5 months ago
Accountancy,
10 months ago
CBSE BOARD XII,
10 months ago