Math, asked by Anonymous, 5 months ago

Resolve into factors

1) \: 1 + a + b + c + ab + bc + ca + abc \\  \\ 2) \: abc^{2} + abd^{2} + cda^{2} + cdb^{2}

Answers

Answered by tennetiraj86
1

Step-by-step explanation:

Given that:-

1) 1+a+b+c+ab+bc+ca+abc

It can be written as

=>(1+a+c)+(b+ab+bc)+(ca+abc)

=>(1+a+c)+b(1+a+c)+ac(1+b)

=>(1+b)(1+a+c)+ac(1+b)

=>(1+b)(1+a+c+ac)

1+a+b+c+ab+bc+ca+abc=(1+b)(1+a+c+ac)

___________________________________

2)Given that:-

abc²+abd²+cda²+cdb²

=>(abc²+cda²)+(abd²+cdb²)

=>ac(bc+ad)+bd(ad+bc)

=>ac(bc+ad)+bd(bc+ad)

=>(ac+bd)(bc+ad)

abc²+abd²+cda²+cdb²=(ac+bd)(bc+ad)

____________________________________

Answered by Anonymous
48

ƛƝƧƜЄƦ

 \small \pink{{1.) \: 1 + a + b +  c + ab + bc + ca + abc}} \\  \small  \orange {{ = (1 + a) + b(b+ ab) +( c + ac) + (bc + abc)}} \\  \small \orange{{ = 1(1 + a) + b(1 + a) + c(1 + a) + bc(1 + a)}} \\ \small \orange{{ = (1 + a) \: (1 + b +  c + bc) = (1a) \:  [ \: 1(1 + b) + c(1 + b)]}}  \\ \small \orange{{ = (1 + a) \: (1 + b) \: (1 + c)}}

 \small \red{{2.) \: abc^{2} + abd^{2}  + cda^{2} + cdb^{2}}} \\     \small \blue{{ = (abc^{2} + cda^{2}) + (abd ^{2} + cdb^{2} }}  \\  \small \blue{{ = ac(bc + ad) + bd(ad + bc)}} \\  \small \blue{{ = (bc + ad) \: (ac + bd) }}


Anonymous: Out standing answer :-)
Anonymous: ƛƬƬƖ ƲƬƬƛM ƲƬƛƦ
Abhishek586246: Spendid
Anonymous: Great as always
Indianarmy08: Perfect !
Similar questions