Math, asked by Anonymous, 4 days ago

Resolve into factors: x(x + 6) – 2(x + 6)​

Answers

Answered by Ferocia
170

\huge\color{pink}{Answer}  \\ \color{purple}{⇝First  \: we  \: have \:  to  \: distribute \:  the \:  terms : -  } \\ x(x + 6) - 2(x + 6) \\  {x}^{2}  + 6 - 2x - 12 \\ \color{purple}{↭Then \:  after \:  combining \:  the  \: like  \: terms, \:  we  \: get : -  } \\  {x}^{2}  + 6x - 2x - 12 \\   {x}^{2}  + 4x - 12 \\ \color{purple}{↬Now,  \: we  \: use \:  the \:  sum -   product  \: pattern \: to \:  get  : -  } \\ x(x + 6) - 2(x + 6) \\  {x}^{2}  + 6x - 2x - 12 \\ \color{purple}{↝Taking \: the \: common \: factor \: for \: these \: pairs :  - } \\  {x}^{2}  + 6x - 2x - 12 \\ x(x + 6) - 2(x + 6) \\ \color{purple}{ ↛Now \:  just \:  rewrite  \: them  \: in  \: factored \:  form :  - } \\ x(x + 6) - 2(x + 6) \\ (x - 2)(x + 6) \\ \color{lightblue}{Hence,  \: the  \: factors \:  are \: (x - 2)(x + 6)}

\color{silver}{Swipe\: for\: the\: whole\: answer~}

\color{pink}{Hope\: this \:helps, \:Thank\: you..!! ~ }

Similar questions