Math, asked by rajkumarmeidhya, 4 months ago

Resolve into factors : x24 - y 24

Answers

Answered by swatijoshi13
0

Answer:

24 will be common so the answer will be 24(x-y)=0

Answered by Rameshjangid
1

Answer:

  The equation x^{24} -y^{24} is resolved. The factors of x^{24} -y^{24} are (x+y) (x-y) (x^{2} +y^{2} ) (x^{2} +y^{2} -xy) (x^{2} +y^{2} +xy) (x^{4}+y^{4}  ) (x^{4} +y^{4} -x^{2} y^{2} ) (x^{8} +y^{8} -x^{4} y^{4} ).

Explanation:

  • Given that the function is x^{24} -y^{24}.
  • We have to find the factors of this function, x^{24} -y^{24}.
  • We know that; (x^{a} )^{b} = x^{ab}, here the power value of each term is 24.
  • Therefore, we can write; 24 = 12 × 2
  • Then, x^{24} -y^{24} = (x^{12}) ^{2} - (y^{12}) ^{2}
  • Now we can apply the equation; a^{2} - b^{2} = (a + b) (a - b)

x^{24} -y^{24} = (x^{12} +y^{12}) (x^{12} -y^{12} )

  • Now the power value of each term is 12. Therefore we can rewrite 12 as; 12 = 6 × 2

(x^{12} +y^{12}) (x^{12} -y^{12} ) = (x^{12} +y^{12}) ((x^{6} )^{2} -(y^{6}) ^{2} )

  • Again we can apply the equation a^{2} - b^{2} = (a + b) (a - b)

(x^{12} +y^{12}) (x^{12} -y^{12} ) = (x^{12} +y^{12}) (x^{6} +y^{6} ) (x^{6} -y^{6} )

  • Now the power value of each term is 6. Therefore we can rewrite 6 as; 6 = 3 x 2

(x^{12} +y^{12}) (x^{12} -y^{12} ) = (x^{12} +y^{12}) (x^{6} +y^{6} ) ((x^{3}) ^{2} -(y^{3}) ^{2} )

  • Again apply the equation a^{2} - b^{2} = (a + b) (a - b)

(x^{12} +y^{12}) (x^{12} -y^{12} ) = (x^{12} +y^{12}) (x^{6} +y^{6} ) (x^{3} +y^{3} ) (x^{3} -y^{3} )

  • Now we can use the equation; a^{3} -b^{3} = (a-b) (a^{2} +b^{2} +ab)

(x^{12} +y^{12}) (x^{6} +y^{6} ) (x^{3} +y^{3} ) (x-y) (x^{2} +y^{2} +xy)

  • By using the equation; a^{3} +b^{3} = (a+b) (a^{2} +b^{2} -ab)

(x^{12} +y^{12}) (x^{6} +y^{6} ) (x^{2} +y^{2} -xy) (x+y) (x^{2} +y^{2} +xy) (x-y)

x^{24} -y^{24} = (x^{12} +y^{12}) (x^{6} +y^{6} ) (x^{2} +y^{2} -xy) (x+y) (x^{2} +y^{2} +xy) (x-y)

  • Now, x^{12} +y^{12} can be further factorize as; (x^{4} )^{3} +(y^{4} )^{3}. By using the equation; a^{3} +b^{3} = (a+b) (a^{2} +b^{2} -ab)

(x^{4} )^{3} +(y^{4} )^{3} = (x^{4}+y^{4}  ) (x^{8} +y^{8} -x^{4} y^{4} )

  • Similarly, x^{6} +y^{6} can be further factorize as; (x^{2}) ^{3} + (y^{2}) ^{3}. By using the equation; a^{3} +b^{3} = (a+b) (a^{2} +b^{2} -ab)

(x^{2}) ^{3} + (y^{2}) ^{3} = (x^{2} +y^{2} ) (x^{4} +y^{4} -x^{2} y^{2} )

x^{24} -y^{24} = (x^{4}+y^{4}  ) (x^{8} +y^{8} -x^{4} y^{4} ) (x^{2} +y^{2} ) (x^{4} +y^{4} -x^{2} y^{2} ) (x^{2} +y^{2} -xy) (x+y) (x^{2} +y^{2} +xy) (x-y)

x^{24} -y^{24} = (x+y) (x-y) (x^{2} +y^{2} ) (x^{2} +y^{2} -xy) (x^{2} +y^{2} +xy) (x^{4}+y^{4}  ) (x^{4} +y^{4} -x^{2} y^{2} ) (x^{8} +y^{8} -x^{4} y^{4} ).

  • Therefore, the factors of x^{24} -y^{24} are (x+y) (x-y) (x^{2} +y^{2} ) (x^{2} +y^{2} -xy) (x^{2} +y^{2} +xy) (x^{4}+y^{4}  ) (x^{4} +y^{4} -x^{2} y^{2} ) (x^{8} +y^{8} -x^{4} y^{4} ).
  • Hence the equation x^{24} -y^{24} is resolved.

To know more, go through the links;

brainly.in/question/7343350

brainly.in/question/18645339

#SPJ3

Similar questions