Math, asked by ajit10102000, 3 months ago

Resolve into partial faction
to (X+3)/(X+1) (X-1)​

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

 \sf \: Resolve \:  in \:  to \:  partial \:  fraction :  \: \dfrac{x + 3}{(x + 1)(x - 1)}

\large\underline{\bold{Solution-}}

 \bf \: Let \: \dfrac{x + 3}{(x + 1)(x - 1)} =  \sf \: \dfrac{a}{x + 1}  + \dfrac{b}{x - 1}  -  - (1)

On taking LCM, we get

\rm :\longmapsto\:(x + 3) = a(x - 1) + b(x + 1) -  - (2)

On substituting 'x = - 1' in equation (2), we get

\rm :\longmapsto\: - 1 + 3 = a( - 1 - 1) + 0

\rm :\longmapsto\:2 =  - 2a

\bf\implies \:a \:  =  \:  -  \: 1 -  - (3)

On substituting 'x = 1' in equation (2), we get

\rm :\longmapsto\:1 + 3 = 0 + b(1 + 1)

\rm :\longmapsto\:4 = 2b

\bf\implies \:b \:  =  \: 2 -  - (4)

On substituting the values of a and b in equation (1), we get

 \bf \: \dfrac{x + 3}{(x + 1)(x - 1)} =  \sf \: \dfrac{ - 1}{x + 1}  + \dfrac{2}{x - 1}

Additional Information :-

Partial Fraction :-

Partial fraction decomposition is the breaking down of a rational expression into simplier parts. It is the opposite of adding rational expressions. When adding two rational expressions, there has to be a common denominator.

\begin{gathered}\boxed{\begin{array}{c|c} \sf term \: in \: denominator & \sf partial \: fraction \: decomposition \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ax + b & \sf \displaystyle \frac{A}{{ax + b}} \\ \\ \sf  {(ax + b)}^{2}  & \sf \displaystyle \frac{{{A_1}}}{{ax + b}} + \frac{{{A_2}}}{{{{\left( {ax + b} \right)}^2}}}  \\ \\ \sf  {ax}^{2} + bx + c  & \sf \displaystyle \frac{{Ax + B}}{{a{x^2} + bx + c}} \end{array}} \\ \end{gathered}

Similar questions