Math, asked by scarop7843, 1 day ago

resolve into partial fraction 2/(x-2)(x+1)​

Answers

Answered by abdsyd69
0

Answer:

2/(x-2)(x+1)=A/x-2 +B/x+1

Step-by-step explanation:

 \frac{a}{x - 2}  +  \frac{b}{x + 1}

Answered by talpadadilip417
4

Step-by-step explanation:

 \begin{array}{l} \displaystyle\rm \frac{2}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1} \\  \\\displaystyle\rm\frac{2}{(x-2)(x+1)}=\frac{A(x+1)+B(x-2)}{(x-2)(x+1)}</p><p> \\  \\\rm2=A(x+1)+B(x−2) \\  \\\rm2=Ax+A+Bx−2B \\\\\rm 2=(A+B)x+A−2B \end{array}

\begin{aligned}&amp;A+B=0\\&amp;A-2B=2\end{aligned}

  • A=−B
  • SubstituteA=−B into A−2B=2.
  • -3B=2

  • Solve for B in −3B=2.

 \rm \: B=-\dfrac{2}{3}

Therefore,

\begin{aligned}&amp;A=\frac{2}{3}\\&amp;B=-\frac{2}{3}\end{aligned}

8 Substitute A,B into the original expression.

 \\  \rm\frac{2}{(x-2)(x+1)}=\frac{2}{3(x-2)}-\frac{2}{3(x+1)}

Partial Fraction Decomposition completes.

 \\  \boxed{\red{  \rm\frac{2}{3(x-2)}-\frac{2}{3(x+1)}}}

Similar questions