resolve into partial fraction. 2 X + 3 / x
Answers
search-icon-header
Search for questions & chapters
search-icon-image
Question
Bookmark
Resolve into partial fractions:
x(x−1)(2x+3)
2x
3
+x
2
−x−3
.
Medium
Solution
verified
Verified by Toppr
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x
A
+
(x−1)
B
+
(2x+3)
C
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
A(x−1)(2x+3)+Bx(2x+3)+Cx(x−1)
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
A(2x
2
+x−3)+B(2x
2
+3x)+C(x
2
−x)
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
2Ax
2
+Ax−3A+2Bx
2
+3Bx+Cx
2
−Cx
2x
3
+x
2
−x−3=(2A+2B+C)x
2
+(A+3B−C)x−3A
⇒ 2A+2B+C=1 --- ( 1 )
⇒ A+3B−C=−1 ---- ( 2 )
⇒ 3A=3 --- ( 3 )
By solving ( 1 ), ( 2 ) and ( 3 ) we get,
A=1,B=
5
−3
,C=
5
1
∴
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x
1
−
5(x−1)
3
+
5(2x+3)
1
x(x−1)(2x+3)
2x
3
+x
2
−x−3
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x
A
+
(x−1)
B
+
(2x+3)
C
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
A(x−1)(2x+3)+Bx(2x+3)+Cx(x−1)
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
A(2x
2
+x−3)+B(2x
2
+3x)+C(x
2
−x)
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x(x−1)(2x+3)
2Ax
2
+Ax−3A+2Bx
2
+3Bx+Cx
2
−Cx
2x
3
+x
2
−x−3=(2A+2B+C)x
2
+(A+3B−C)x−3A
⇒ 2A+2B+C=1 --- ( 1 )
⇒ A+3B−C=−1 ---- ( 2 )
⇒ 3A=3 --- ( 3 )
By solving ( 1 ), ( 2 ) and ( 3 ) we get,
A=1,B=
5
−3
,C=
5
1
∴
x(x−1)(2x+3)
2x
3
+x
2
−x−3
=
x
1
−
5(x−1)
3
+
5(2x+3)
1