resolve into partial fraction x+4/(x^2-4)(x+1)
Answers
Answered by
0
Answer:
The answer is
=
1
+
−
1
2
x
2
+
1
+
−
1
4
x
+
1
+
1
4
x
−
1
Explanation:
x
4
(
x
2
+
1
)
(
x
2
−
1
)
=
x
4
x
4
−
1
=
1
+
1
x
4
−
1
1
x
4
−
1
=
1
(
x
2
+
1
)
(
x
+
1
)
(
x
−
1
)
=
x
4
(
x
2
+
1
)
(
x
2
−
1
)
=
A
x
+
B
x
2
+
1
+
C
x
+
1
+
D
x
−
1
=
(
A
x
+
B
)
(
x
2
−
1
)
+
C
(
x
−
1
)
(
x
2
+
1
)
+
D
(
x
+
1
)
(
x
2
+
1
)
(
x
2
+
1
)
(
x
2
−
1
)
1
=
(
A
x
+
B
)
(
x
2
−
1
)
+
C
(
x
−
1
)
(
x
2
+
1
)
+
D
(
x
+
1
)
(
x
2
+
1
)
)
Let
x
=
1
,
⇒
,
1
=
4
D
,
⇒
,
D
=
1
4
Let
x
=
−
1
,
⇒
,
1
=
−
4
C
,
⇒
,
C
=
−
1
4
No coefficients,
1
=
−
B
−
C
+
D
,
⇒
,
B
=
1
2
−
1
=
−
1
2
Coefficients of
x
3
,
⇒
,
0
=
A
+
C
+
D
,
⇒
.
A
=
0
Therefore,
x
4
(
x
2
+
1
)
(
x
2
−
1
)
=
1
+
−
1
2
x
2
+
1
+
−
1
4
x
+
1
+
1
4
x
−
1
Similar questions