Math, asked by Thuninajji, 1 month ago

resolve into partial fractions​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{2x + 3}{(x + 1)(x - 3)}

To resolve in to partial fraction,

Let assume that

\rm :\longmapsto\:\dfrac{2x + 3}{(x + 1)(x - 3)}  = \dfrac{a}{x + 1}  + \dfrac{b}{x - 3} -  - (1)

\rm :\longmapsto\:2x + 3 = a(x - 3) + b(x + 1)

On substituting 'x = - 1', we get

\rm :\longmapsto\:2( - 1) + 3 = a( - 1 - 3) + b( - 1 + 1)

\rm :\longmapsto\: - 2 + 3 =  - 4a

\rm :\longmapsto\: 1 =  - 4a

\rm :\implies\: \boxed{ \bf{ \: a =  -  \:  \frac{1}{4}}}

On substituting 'x = 3', we get

\rm :\longmapsto\:2(3) + 3 = a(3 - 3) + b(3 + 1)

\rm :\longmapsto\:6 + 3 = 4b

\rm :\longmapsto\:9 = 4b

\rm :\implies\: \boxed{ \bf{ \: b =  \:  \frac{9}{4}}}

On substituting the values of a and b in equation (1), we get

\bf :\longmapsto\:\dfrac{2x + 3}{(x + 1)(x - 3)}  = \dfrac{ - 1}{4(x + 1)}  + \dfrac{9}{4(x - 3)}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf form \: of \: rational \:  {f}^{n}  & \bf form \: of \: partial \: fraction \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \dfrac{1}{(ax + b)(cx + d)}  & \sf  \dfrac{p}{ax + b} + \dfrac{q}{cx + d}  \\ \\ \sf \dfrac{1}{ {(ax + b)}^{2} }  & \sf \displaystyle \frac{{{A_1}}}{{ax + b}} + \frac{{{A_2}}}{{{{\left( {ax + b} \right)}^2}}} \\ \\ \sf \dfrac{1}{(x - d)( {ax}^{2} + bx + c)}  & \sf \displaystyle \frac{{Ax + B}}{{a{x^2} + bx + c}} + \dfrac{C}{x - d}  \end{array}} \\ \end{gathered}

Similar questions