resolve into partial fractions:
6x³+5x²-7/2x²-x-1
Answers
Answered by
0
Step-by-step explanation:
6x³+5x²-7/3x²-2x-1
= 6x³-4x² + 9x²-2x + 2x-7/3x²-2x-1
= 6x³-4x² - 2x + 9x² + 2x-7/3x²-2x-1
= 2x( 3x²-2x-1) + 9x² + 2x-7 / 3x²-2x-1
= 2x + (9x² + 2x-7 / 3x²-2x-1)
= 2x + (9x² -6x + 6x + 2x - 3 + 3-7/ 3x²-2x-1)
= 2x + (9x² -6x -3 + 8x- 4/3x²-2x-1)
= 2x + 3 + (8x- 4/3x²-2x-1)
= 8x- 4 / 3x²-2x-1/3x²-3x+x -1
= 8x-4 /3x(x-1)+1(x-1)
= 8x- 4 /(3x+1)(x-1)
8x- 4 / (3x+1)(x-1) = A/(3x + 1) + B/(x - 1)
=> 8x - 4 = A(x - 1) + B(3x + 1)
x = - 1/3
=> -8/3 - 4 = A(-4/3)
=>- 8 - 12 = -4A
=> A = 5
x = 1
=> 4 = B(4)
=> B = 1
2x + 3 + 5/(3x + 1) + 1/(x - 1)
6x³+5x²-7/3x²-2x-1 = 2x + 3 + 5/(3x + 1)
+ 1/(x - 1)
Similar questions