Resolve into partial fractions of 9/(x-1)(x+3)²
Answers
EXPLANATION.
⇒ ∫9/(x - 1)(x + 3)².
As we know that,
⇒ ∫9/(x - 1)(x + 3)² = ∫A/(x - 1) + ∫B/(x + 3)².
⇒ 9/(x - 1)(x + 3)² = A(x + 3)² + B(x - 1)/(x - 1)(x + 3)².
⇒ 9 = A(x + 3)² + B(x - 1).
As we know that,
Put the value of x = -3 in equation, we get.
⇒ 9 = A(-3 + 3)² + B(-3 - 1).
⇒ 9 = B(-4).
⇒ B = -9/4.
Put the value of x = 1 in equation, we get.
⇒ 9 = A(1 + 3)² + 0.
⇒ 9 = 16A.
⇒ A = 9/16.
Put the value of A & B in equation, we get.
⇒ ∫9/16/(x - 1) + ∫-9/4/(x + 3)².
⇒ ∫9/16(x - 1) + ∫-9/4(x + 3)².
⇒ 9/16∫1/(x - 1) + -9/4∫1/(x + 3)².
⇒ 9/16㏒(x - 1) - 9/4㏒(x + 3)² + c.
MORE INFORMATION.
Integration of a function.
∫f(x)dx = Ф(x) + c ⇔ d [Ф(x)]/dx = f(x).
Basic theorems on integration.
If f(x), g(x) are two functions of a variable x and k is a constant, then.
(1) = ∫k f(x)dx = k ∫f(x)dx + c.
(2) = ∫ [f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx + c.
(3) = d[∫f(x)dx]/dx = f(x).
(4) = ∫[d f(x)/dx]dx = f(x).
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ On taking LCM, we get
❶ On Substituting 'x = 1' in equation (2), we get
❷ Substituting 'x = - 3' in the equation (2), we get
❸ Substituting 'x = 0' in the equation (2), we get