Math, asked by kunalbpatil02, 4 months ago

Resolve into partial fractions
x \div  {x}^{3}  + 1

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Resolve \:  in \:  to  \: partial \:  fraction :  \: \dfrac{x}{ {x}^{3}  + 1}

\large\underline{\bold{Solution-}}

We know,

 \sf \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )

So,

 \bf \:  {x}^{3}  + 1 \:  =  \sf \: (x + 1)( {x}^{2}  - x + 1)

Therefore,

 \bf \: \dfrac{x}{ {x}^{3}  + 1}  = \rm \:  \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }

Now,

 \bf \: Let \:  \:  \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }  = \sf \:  \dfrac{a}{x + 1}  + \dfrac{bx + c}{ {x}^{2} - x + 1 }  -  - (1)

On taking LCM, we get

 \sf \: x \:  = a( {x}^{2}  - x + 1) + (bx + c)(x + 1) -  - (2)

On substituting 'x = - 1' in equation (2), we get

\rm :\longmapsto\: - 1 = a(1 + 1 + 1) + 0

\rm :\longmapsto\: - 1 = 3a

\bf\implies \:a \:  =  \:  -  \: \dfrac{1}{3}  -  - (3)

On substituting 'x = - 0' in equation (2), we get

\rm :\longmapsto\: 0 = a(0 - 0 + 1) + c(0 + 1)

\rm :\longmapsto\:a + c = 0

\rm :\longmapsto\:c =  -  \: a

\bf\implies \:\:c \:  =  \: \dfrac{1}{3}  -  - (4)

On substituting 'x = 1' in equation (2), we get

\rm :\longmapsto\:1 = a(1 - 1 + 1) + (b + c)(2)

\rm :\longmapsto\:1 = a + 2b + 2c

\rm :\longmapsto\:1 =  -  \: \dfrac{1}{3}  + \dfrac{2}{3}  + 2b

\rm :\longmapsto\:1 = \dfrac{1}{3}  + 2b

\rm :\longmapsto\:2b = 1 - \dfrac{1}{3}

\rm :\longmapsto\:2b = \dfrac{2}{3}

\bf\implies \:b \:  =  \: \dfrac{1}{3}  \:  -  - (5)

Hence,

On substituting the values of a, b and c in equation (1), we get

 \bf \:  \:  \dfrac{x}{(x + 1)( {x}^{2} - x + 1) }  = \sf \:  \dfrac{ - 1}{3(x + 1)}  + \dfrac{x + 1}{3( {x}^{2} - x + 1) }

Therefore,

 \bf \:  \:  \dfrac{x}{ {x}^{3}  + 1 }  = \sf \:  \dfrac{ - 1}{3(x + 1)}  + \dfrac{x + 1}{3( {x}^{2} - x + 1) }

Additional Information :-

Partial Fraction :-

Partial fraction decomposition is the breaking down of a rational expression into simplier parts. It is the opposite of adding rational expressions. When adding two rational expressions, there has to be a common denominator.

\begin{gathered}\boxed{\begin{array}{c|c} \sf term \: in \: denominator & \sf partial \: fraction \: decomposition \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ax + b & \sf \displaystyle \frac{A}{{ax + b}} \\ \\ \sf  {(ax + b)}^{2}  & \sf \displaystyle \frac{{{A_1}}}{{ax + b}} + \frac{{{A_2}}}{{{{\left( {ax + b} \right)}^2}}}  \\ \\ \sf  {ax}^{2} + bx + c  & \sf \displaystyle \frac{{Ax + B}}{{a{x^2} + bx + c}} \end{array}} \\ \end{gathered}

Similar questions