Math, asked by sanjidapravinsanjida, 3 months ago

Resolve into partial friction (3x-2)/((X+1)(X+1)​

Answers

Answered by ITzteriqueenxx
20

Answer:

The table give general form of the partial fractions :

So ,

(1−2x)(1−x

2

)

1+3x+2x

2

=

(1−2x)(1−x)(1+x)

1+3x+2x

2

=>

(1−2x)(1−x)(1+x)

1+3x+2x

2

=

1−2x

A

+

1−x

B

+

1+x

C

=>1+3x+2x

2

=A(1−x)(1+x)+B(1−2x)(1+x)+C(1−2x)(1−x)

For x=1,=>1+3(1)+2(1)

2

=A(0)+B(1−2)(1+1)+C(0)

=>6=−2B

=>B=−3 −(1)

For x=−1,=>1+3(−1)+2(−1)

2

=A(0)+B(0)+C(1−2(−1))(1−(−1))

=>0=6C

=>C=0 −(2)

For x=

2

1

,=>1+3(

2

1

)+2(

2

1

)

2

=A(

2

1

)(1+

2

1

)+B(0)+C(0)

=>3=

4

3

A

=>A=4 −(3)

Therefore , from (1),(2) and (3) =>

(1−2x)(1−x)(1+x)

1+3x+2x

2

=

1−2x

4

Answered by farhaanaarif84
8

3x−2(x+1)2(x−3)2=A(x+1)2+Bx+1+C(x−3)2+Dx−3

Multiply buy the least common denominator ( (x+1)2(x−3)2 ) to eliminate the fractions.

3x−2=A(x−3)2+B(x+1)(x−3)2+C(x+1)2+D(x+1)2(x−3)

Multiply the binomials (sorry about the long equations)

3x−2=A(x2−6x+9)+B(x3−5x2+3x+9)+...

...C(x2+2x+1)+D(x3−x2−5x−3)

Distribute A, B, C, and D:

3x−2=Ax2−6Ax+9A+Bx3−5Bx2+3Bx+9B+...

...Cx2+2Cx+C+Dx3−Dx2−5Dx−3D

Similar questions