Math, asked by Parkchimkook, 1 day ago

resolve partial fractions 1/(x+1)(x+2)(x+3)

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{(x + 1)(x + 2)(x + 3)}

Let assume that

\rm :\longmapsto\:\dfrac{1}{(x + 1)(x + 2)(x + 3)} = \dfrac{a}{x + 1}  + \dfrac{b}{x + 2}  + \dfrac{c}{x + 3}

So, On taking LCM, we get

\rm :\longmapsto\:1 = a(x + 2)(x + 3) + b(x + 1)(x + 3) + c(x + 1)(x + 2)

On substituting x = - 1, we get

\rm :\longmapsto\:1 = a( - 1+ 2)( - 1 + 3) +0 + 0

\rm :\longmapsto\:1 = a(1)(2)

\bf\implies \:a = \dfrac{1}{2}

Now, On substituting x = - 2, we get

\rm :\longmapsto\:1 = 0 + b( - 2+ 1)( - 2 + 3) + 0

\rm :\longmapsto\:1 =  b( -1)(1)

\bf\implies \:b \:  =  \:  -  \: 1

Now, On substituting x = - 3, we get

\rm :\longmapsto\:1 = 0 + 0 + c( - 3 + 1)( - 3 + 2)

\rm :\longmapsto\:1 =c( - 2)( -1)

\bf\implies \:c = \dfrac{1}{2}

So, on substituting the values of a, b and c, we get

\rm :\longmapsto\:\dfrac{1}{(x + 1)(x + 2)(x + 3)} = \dfrac{1}{2(x + 1)} -  \dfrac{1}{x + 2}  + \dfrac{1}{2(x + 3)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf Fraction & \bf Partial \:  Fraction \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \dfrac{1}{(ax + b)(cx + d)}  & \sf \dfrac{p}{ax + b}  + \dfrac{q}{cx + d}  \\ \\ \sf \dfrac{1}{ {(ax + b)}^{2} }  & \sf \dfrac{p}{ax + b}  + \dfrac{q}{ {(ax + b)}^{2} }  \\ \\ \sf \dfrac{1}{(ax + b)(c {x}^{2}  + d)}  & \sf \dfrac{p}{ax + b}  + \dfrac{qx + r}{c {x}^{2}  + d}  \end{array}} \\ \end{gathered}

Similar questions