Math, asked by YourHelperAdi, 5 hours ago

Resolve The factors :
Please don't Spam
Answer with full explanation

Attachments:

Answers

Answered by javidshaikh26
0

Answer:

x=x y z+x=3x

ans is 3x

Step-by-step explanation:

please mark me brainliest

Answered by mathdude500
38

Given Question

Resolve in to factors

 \sf \:  {\bigg(\displaystyle\sum_{x,y,z}\rm x\bigg)}^{3} -  \displaystyle\sum_{x,y,z}\rm  {x}^{3}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: \:  {\bigg(\displaystyle\sum_{x,y,z}\rm x\bigg)}^{3} -  \displaystyle\sum_{x,y,z}\rm  {x}^{3}

can be rewritten as

 \rm \:  =  \:  {(x + y + z)}^{3} - ( {x}^{3} +  {y}^{3} +  {z}^{3})

can be further rewritten as

 \rm \:  =  \:  {(x + y + z)}^{3} -  {x}^{3}  -   {y}^{3}  -  {z}^{3}

 \rm \:  =  \:  [{(x + y + z)}^{3} -  {x}^{3}]  -   [{y}^{3} + {z}^{3}]

We know,

\boxed{\tt{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} +  {y}^{2}  - xy)}}

and

\boxed{\tt{  {x}^{3} - {y}^{3} = (x - y)( {x}^{2} +  {y}^{2} + xy)}}

So, using these Identities, we get

 \rm =(x + y + z - x)[ {(x + y + z)}^{2} +  {x}^{2} - x(x + y + z)] - (y + z)( {y}^{2} +  {z}^{2}  - yz)

 \rm =(y + z)[ {(x + y + z)}^{2} +  {x}^{2}  +   {x}^{2}  + xy  +  xz] - (y + z)( {y}^{2} +  {z}^{2}  -  yz)

 \rm =(y + z)[ {(x + y + z)}^{2} +  {2x}^{2}    + xy + xz] - (y + z)( {y}^{2} +  {z}^{2}  -  yz)

 \rm =(y + z)[ {(x + y + z)}^{2} +  {2x}^{2}    + xy +  xz - {y}^{2} - {z}^{2} + yz]

 \rm =(y + z)[ {x}^{2}+{y}^{2}+{z}^{2} + 2xy + 2yz + 2zx +  {2x}^{2}  + xy  + xz - {y}^{2} - {z}^{2} + yz]

 \rm =(y + z)[3{x}^{2} + 3xy + 3yz + 3zx]

 \rm \:  =  \: 3(y + z)( {x}^{2} + xy + yz + zx)

 \rm \:  =  \: 3(y + z)[x(x + y) + z(x + y)]

 \rm \:  =  \: 3(y + z)[(x + y)(x + z)]

 \rm \:  =  \: 3(y + z)(x + y)(x + z)

Hence,

 \boxed{\tt{ \sf {\bigg(\displaystyle\sum_{x,y,z}\rm x\bigg)}^{3} -  \displaystyle\sum_{x,y,z}\rm  {x}^{3} = 3(x + y)(y + z)(z + x)}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions