Math, asked by UBEDSHEIKH1, 11 hours ago

resolve the partial fraction​

Attachments:

Answers

Answered by Anonymous
10

Given :

 \sf \dfrac{x}{(x  +  1)(x - 2)(x - 1)}\\\\

\sf \dfrac{x}{(x  +  1)(x - 2)(x - 1)}  =  \frac{A}{(x + 1)}  +  \frac{B}{(x - 2)}  +  \frac{C}{(x   -  1)}\\\\

  • To find the value of 'A', put x = -1 except in (x+1)
  • To find the of 'B', put the value of x = 2 except in (x-2)
  • To find the value of 'C', put x = 1 except in (x-1)

 \therefore \: A  = \frac{ - 1}{6}  \:  \: B =  \frac{2}{3}  \:  \:  C =  \frac{ - 1}{2}\\\\

 \frac{x}{(x + 1)(x - 2)(x - 1)}  = \frac{ - 1}{6(x + 1)}  +  \frac{2}{3(x - 2)}   -  \frac{1}{2(x - 1)}\\\\

\int \frac{x}{(x + 1)(x - 2)(x - 1)}  = \int\left( \frac{ - 1}{6(x + 1)}  +  \frac{2}{3(x - 2)}   -  \frac{1}{2(x - 1)}\right)dx\\\\

\int \frac{x}{(x + 1)(x - 2)(x - 1)}  =  -  \frac{1}{6} \int\frac{ 1}{(x + 1)} dx + \frac{2}{3} \int \frac{1}{(x - 2)}  dx -   \frac{1}{2} \int\frac{1}{(x - 1)}dx\\\\

\sf\int \dfrac{x}{(x + 1)(x - 2)(x - 1)}  =  -  \frac{1}{6}log|x + 1 |+ \frac{2}{3} log|x - 2|- \frac{1}{2} log|x - 1|

Points to remember when we do partial function integration :

  1. P(x)/(x+a)(x+b) = A/(x+a) + B/(x+b)
  2. P(x)/(x²+a)(x+b) = Ax+B/(x²+a) + C/(x+b)
  3. P(x)/(x+a)²(x+b) = A/(x+a)+B(x+a)² + C(x+b)
Answered by TheBestWriter
2

  \boxed{ \huge{ \rm \gray{here \:  \: is \:  \: your \:  \: answer}}}

Attachments:
Similar questions