Resolve x^3/(x-a)(x-b)(x-c) into partial fraction
Answers
Answer:
\bf{\frac{x}{(x-a)(x-b)(x-c)}=\frac{a}{(a-b)(a-c)}\frac{1}{x-a}+\frac{b}{(b-a)(b-c)}\frac{1}{x-b}+\frac{c}{(c-a)(c-b)}\frac{1}{x-c}}
Step-by-step explanation:
Resolve x/(x-a)(x-b)(x-c) into partial fraction
\text{let}\frac{x}{(x-a)(x-b)(x-c)}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{x-c}
\implies\:\frac{x}{(x-a)(x-b)(x-c)}=\frac{A(x-b)(x-c)+B(x-a)(x-c)+C(x-a)(x-b)}{(x-a)(x-b)(x-c)}
\implies\:x=A(x-b)(x-c)+B(x-a)(x-c)+C(x-a)(x-b)..............(1)
put x=a in (1), we get
\implies\:a=A(a-b)(a-c)
\implies\:\bf{A=\frac{a}{(a-b)(a-c)}}
put x=b in (1), we get
\implies\:b=B(b-a)(b-c)
\implies\:\bf{B=\frac{b}{(b-a)(b-c)}}
put x=c in (1), we get
\implies\:c=C(c-a)(c-b)
\implies\:\bf{C=\frac{c}{(c-a)(c-b)}}
\therefore\:\bf{\frac{x}{(x-a)(x-b)(x-c)}=\frac{a}{(a-b)(a-c)}\frac{1}{x-a}+\frac{b}{(b-a)(b-c)}\frac{1}{x-b}+\frac{c}{(c-a)(c-b)}\frac{1}{x-c}}
Hope it helps you Please mark me as brainliest