Math, asked by nurukurthivvsatyanar, 5 months ago

Resolving into partial fractions 3x-1/(x-2)(x-3)

Answers

Answered by sanju8824
1

Answer:

Let

(x

2

+x+1)(x+1)

2

x

3

−3x−2

=

x

2

+x+1

Ax+B

+

x+1

C

+

(x+1)

2

D

⇒x

3

−3x−2=(Ax+B)(x+1)

2

+C(x

2

+x+1)(x+1)+D(x

2

+x+1)

⇒x

3

−3x−2=A(x

3

+2x

2

+2x)+B(x

2

+2x+1)+C(x

3

+2x

2

+2x+1)+D(x

2

+x+1)

On comapring coefficients we get

A+C=1,2A+B+2C+D=0,2A+2B+2C+D=−3,B+C+D=−2

⇒A=3,B=−1,C=−3,D=2

Hence

(x

2

+x+1)(x+1)

2

x

3

−3x−2

=

x

2

+x+1

3x−1

+

x+1

−3

+

(x+1)

2

2

Hence, option 'A' is correct.

Similar questions