resonalise the denominator of rote over a+x - rote over a-x by rote over a+x - rote over a-x
Answers
We rationalise the denominator by multiplying both the numerator and the denominator by {√(a + x) + √(a - x)}
So,
y = {√(a + x) + √(a - x)}{√(a + x) + √(a - x)}/{√(a + x) - √(a - x)}/{√(a + x) + √(a - x)}
= {a + x + 2√(a² - x²) + a - x}/(a + x - a + x)
= {2a + 2√(a² - x²)}/(2x)
⇒ xy = a + √(a² - x²)
⇒ xy - a = √(a² - x²)
Now, squaring both sides, we get
(xy - a)² = a² - x²
⇒ x²y² - 2axy + a² = a² - x²
⇒ xy² - 2ay = - x
⇒ xy² - 2ay + x = 0
Answer:
We rationalise the denominator by multiplying both the numerator and the denominator by {√(a + x) + √(a - x)}
So,
y = {√(a + x) + √(a - x)}{√(a + x) + √(a - x)}/{√(a + x) - √(a - x)}/{√(a + x) + √(a - x)}
= {a + x + 2√(a² - x²) + a - x}/(a + x - a + x)
= {2a + 2√(a² - x²)}/(2x)
⇒ xy = a + √(a² - x²)
⇒ xy - a = √(a² - x²)
Now, squaring both sides, we get
(xy - a)² = a² - x²
⇒ x²y² - 2axy + a² = a² - x²
⇒ xy² - 2ay = - x
⇒ xy² - 2ay + x = 0
hope its help.
plz mark me as a brainliest