Math, asked by rsjoshi2006, 1 month ago

retionalize 1/(3+√2-√5)​

Answers

Answered by someoneudonno
0

Answer:

don't miss your math CLASSES again, and pay attention for at least passing

Attachments:
Answered by LaeeqAhmed
0

 \frac{1}{3 +  \sqrt{2}  -  \sqrt{5} }

 \implies \frac{(3 +  \sqrt{2 })   +  \sqrt{5} }{[3 +  \sqrt{2}  -  \sqrt{5}][(3  + \sqrt{2})  +  \sqrt{5} ] }

\implies \frac{3 +  \sqrt{2 }  +  \sqrt{5} }{(3 +  \sqrt{2} )^{2}  -  (\sqrt{5} )^{2}  }

\implies \frac{3 +  \sqrt{2 }   +  \sqrt{5} }{9 + 2 + 6 \sqrt{2}   - 5  }

\implies \frac{3 +  \sqrt{2 }   +  \sqrt{5} }{6 + 6 \sqrt{2}    }

 \implies  \frac{3 +  \sqrt{2}  +  \sqrt{5} }{6(1 +  \sqrt{2}) }

\implies  \frac{(3 +  \sqrt{2}  +  \sqrt{5})(1 -  \sqrt{2} ) }{6(1 +  \sqrt{2})(1 -  \sqrt{2}  )}

\implies  \frac{(3 +  \sqrt{2}  +  \sqrt{5})(1 -  \sqrt{2} ) }{6[(1)^{2}  -  (\sqrt{2})  ^{2}  ]}

\implies  \frac{3 +  \sqrt{2}  +  \sqrt{5} - 3 \sqrt{2}  - 2 -  \sqrt{10}}{6[1 -  2 ]}

\implies  \frac{1   +  \sqrt{5}     - 2\sqrt{2} -  \sqrt{10} }{ - 6}

  \red{\therefore  \frac{ \sqrt{10}  + 2 \sqrt{2}  -  \sqrt{5}  - 1}{6} }

Similar questions