Math, asked by Anonymous, 3 months ago

Retionlise the denominator 1/√3+√5+√7​

Answers

Answered by MysticalStar07
53

\sf \frac{1}{ \sqrt{3} +  \sqrt{5}  + 7} \times  \frac{( \sqrt{3} +  \sqrt{5} -  \sqrt{7})  }{ (\sqrt{3} +  \sqrt{5} -  \sqrt{7}) }

\sf \frac{ \sqrt{3} +  \sqrt{5} -  \sqrt{7} }{3 + 5 + 2 \sqrt{15 - 7}}  =  \frac{ \sqrt{3} +  \sqrt{5} -  \sqrt{2}}{1 + 2 \sqrt{15}}  \times  \frac{1 - 2 \sqrt{15}}{1 - 2 \sqrt{15}}

\sf \red\implies  \frac{( \sqrt{3} +  \sqrt{5} -  \sqrt{7})  \times  - 2 \sqrt{15} }{1 - 60}

 \sf\purple\implies  \frac{ - 6 \sqrt{5} - 10 \sqrt{3} + 14 \sqrt{15}}{ - 59}

\sf \blue\implies  \frac{6 \sqrt{5} + 10 \sqrt{3} - 14 \sqrt{15} }{59}


Anonymous: hi blue star
Answered by Anonymous
47

\bf \frac{ \sqrt{3} + \sqrt{5} - \sqrt{7} }{3 + 5 + 2 \sqrt{15 - 7}} = \frac{ \sqrt{3} + \sqrt{5} - \sqrt{2}}{1 + 2 \sqrt{15}} \times \frac{1 - 2 \sqrt{15}}{1 - 2 \sqrt{15}}

\bf \implies\blue {\dfrac{( \sqrt{3} + \sqrt{5} - \sqrt{7}) \times - 2 \sqrt{15} }{1 - 60}}

\bf \implies\red {\dfrac{ - 6 \sqrt{5} - 10 \sqrt{3} + 14 \sqrt{15}}{ - 59}}

\bf \implies \orange {\dfrac{6 \sqrt{5} + 10 \sqrt{3} - 14 \sqrt{15} }{59}}

Similar questions