Returns to scale refers to
when all the factors are variable.
A
B
when one factor is fixed, while others are
variable.
When all the factors are fixed
C С
D
when one factor is variable, while others are
fixed
Answers
Explanation:
n economics, returns to scale describe what happens to long run returns as the scale of production increases, when all input levels including physical capital usage are variable (able to be set by the firm). The concept of returns to scale arises in the context of a firm's production function. It explains the long run linkage of the rate of increase in output (production) relative to associated increases in the inputs (factors of production). In the long run, all factors of production are variable and subject to change in response to a given increase in production scale. While economies of scale show the effect of an increased output level on unit costs, returns to scale focus only on the relation between input and output quantities.
There are three possible types of returns to scale: increasing returns to scale, constant returns to scale, and diminishing (or decreasing) returns to scale. If output increases by the same proportional change as all inputs change then there are constant returns to scale (CRS). If output increases by less than the proportional change in all inputs, there are decreasing returns to scale (DRS). If output increases by more than the proportional change in all inputs, there are increasing returns to scale (IRS). A firm's production function could exhibit different types of returns to scale in different ranges of output. Typically, there could be increasing returns at relatively low output levels, decreasing returns at relatively high output levels, and constant returns at some range of output levels between those extremes.[citation needed]
In mainstream microeconomics, the returns to scale faced by a firm are purely technologically imposed and are not influenced by economic decisions or by market conditions (i.e., conclusions about returns to scale are derived from the specific mathematical structure of the production function in isolation)