Social Sciences, asked by itzcutygirl29, 4 months ago

rhe perimeter of an iscoscles triangleis 30 cm and each equal side be 12 cm ​


itzcutygirl29: faizi just leave
itzcutygirl29: just leave
itzcutygirl29: i dont wanna talk

Answers

Answered by Anonymous
68

 \huge \sf \underline \red{Answer : }

 \sf \underline \green{ \therefore \: Area  \: of  \: triangle  = 9 \sqrt{15}  {cm}^{2}}

 \huge \sf \underline \orange{To \:  Find \: }

  • Area of triangle

 \sf \huge \underline \blue{solution : }

Given,

  • perimeter of an iscoscles triangle is 30cm

  • Each equal side be 12cm

 \sf \underline{we \: know \: that : }

 \sf{ \boxed{ \underline{ \underline{ \red{ \tt{Area \:  of \:  triangle  =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

where,

  • s is semi perimeter

  • a,b,c is the sides of the triangle

Given:

  • Triangle is iscoscles

  • Iscoscles triangle two sides are equal so,

 \sf{a = b = 12cm}

 \sf{Perimeter = 30cm}

 \sf \underline{we \: know \: that : }

 \sf{semi \: perimeter =  \dfrac{ perimeter }{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ s=  \dfrac{30}{2}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ s=  15cm}

Now we have to find c we get,

 \sf{perimeter = 30cm}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{a + b + c = 30cm}

where

  • a is 12cm

  • b is 12cm

  • c is ?

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{12cm+ 12cm+ c = 30cm}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{24 + c = 30}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{c = 30 - 24}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{c = 6cm}

Now we have to find the area of triangle:

\sf{ \boxed{ \underline{ \underline{ \red{ \tt{Area \:  of \:  triangle  =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

where,

  • a is 12cm

  • b is 12 cm

  • c is 6cm

  • s is 15 cm

 \:  \:  \sf{ =  \sqrt{15(15 - 12)(15 - 12)(15 - 6)}}

\:  \:  \sf{ =  \sqrt{15(3)(3)(9)}}

\:  \:  \sf{ =  \sqrt{15(9)(9)}}

\:  \:  \sf{ =  \sqrt{9 \times 9}  \times  \sqrt{15}}

\:  \:  \sf{ =  \sqrt{9 {}^{2} }  \times  \sqrt{15}}

\:  \:  \sf{ = (9) \times  \sqrt{15}}

\:  \:  \sf{ = 9  \sqrt{15}}

 \sf \underline \green{ \therefore \: Area  \: of  \: triangle  = 9 \sqrt{15}  {cm}^{2}}

Answered by anantya30
1

Answer:

answer

Explanation:

Perimeter of isosceles triangle=30cm

Length of equal sides=12cm

Let third side of triangle=xcm

According to problem,

x+12+12=30

x+24=30

x=30−24

x=6

∴ Third side of triangle=6cm

Using Heron's formula

Area of triangle=

s(s−a)(s−b)(s−c)

sq. units

where s=

2

a+b+c

s=

2

30

=15

Area of triangle=

15(15−12)(15−12)(15−6)

cm

2

=

15×3×3×9

cm

2

=3×3×

15

cm

2

=9

15

cm

2

∴ Area of triangle=9

15

cm

2

.

Similar questions