Math, asked by rajputgirl19, 1 year ago

rhs prove ......plzz solve fast

Attachments:

Answers

Answered by chopraneetu
6

lhs =  { \sin}^{6}  \theta +  { \cos}^{6}  \theta \\  =  {( { \sin }^{2} \: \theta)}^{3}  + {({ \ \cos }^{2} \theta)}^{3}  \\  =  ({ \sin }^{2} \theta \: +{\cos }^{2} \theta)( ( {{\sin }^{2} \theta)}^{2} +({{\cos }^{2} \theta)}^{2}  -  2{{\sin}^{2} \theta  \cos }^{2} \theta) \\  = 1( ( {{\sin }^{2} \theta)}^{2} +({{\cos }^{2} \theta)}^{2}  -  2{{\sin}^{2} \theta  \cos }^{2} \theta) \\  = ({\sin }^{2} \theta+{\cos }^{2} \theta)^{2} -{{\sin}^{2} \theta  \cos }^{2} \theta - 2{{\sin}^{2} \theta  \cos }^{2} \theta\\ = 1 - 3{{\sin}^{2} \theta  \cos }^{2} \theta \\  = rhs
Answered by Anonymous
16
hiii mate here is ur solution
Attachments:

PrinceJK786: happy b'day
PrinceJK786: hello
Similar questions