right ans only ✌
good morning ☺
Answers
Step by Step Solution:
STEP 1 :
3
Simplify —
2
Equation at the end of step 1 :
1 3 3
(((——•(x3))-(8•(y3)))+((——•(x2))•y))-((—•x)•y2)
64 16 2
STEP 2 : Equation at the end of step 2
1 3 3xy2
(((——•(x3))-(8•(y3)))+((——•(x2))•y))-————
64 16 2
STEP 3 :
3
Simplify ——
16
Equation at the end of step 3 :
1 3 3xy2
(((——•(x3))-(8•(y3)))+((——•x2)•y))-————
64 16 2
STEP 4 : Equation at the end of step 4
1 3x2 3xy2
(((——•(x3))-(8•(y3)))+(———•y))-————
64 16 2
STEP 5 :
Equation at the end of step 5 :
1 3x2y 3xy2
(((——•(x3))-23y3)+————)-————
64 16 2
STEP 6 :
1
Simplify ——
64
Equation at the end of step 6 :
1 3x2y 3xy2
(((—— • x3) - 23y3) + ————) - ————
64 16 2
STEP 7 : Equation at the end of step 7
x3 3x2y 3xy2
((—— - 23y3) + ————) - ————
64 16 2
STEP 8 : Rewriting the whole as an Equivalent Fraction
8.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using 64 as the denominator :
23y3 23y3 • 64
23y3 = ———— = —————————
1 64
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
8.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x3 - (23y3 • 64) x3 - 512y3
———————————————— = ——————————
64 64
Equation at the end of step 8 :
(x3 - 512y3) 3x2y 3xy2
(———————————— + ————) - ————
64 16 2
STEP 9 : Trying to factor as a Difference of Cubes
9.1 Factoring: x3-512y3
Theory : A difference of two perfect cubes, a3 - b3 can be factored into
(a-b) • (a2 +ab +b2)
Proof : (a-b)•(a2+ab+b2) =
a3+a2b+ab2-ba2-b2a-b3 =
a3+(a2b-ba2)+(ab2-b2a)-b3 =
a3+0+0+b3 =
a3+b3
Check : 512 is the cube of 8
Check : x3 is the cube of x1
Check : y3 is the cube of y1
Factorization is :
(x - 8y) • (x2 + 8xy + 64y2)
Trying to factor a multi variable polynomial :
9.2 Factoring x2 + 8xy + 64y2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Calculating the Least Common Multiple :
9.3 Find the Least Common Multiple
The left denominator is : 64
The right denominator is : 16
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 6 4 6
Product of all
Prime Factors 64 16 64
Least Common Multiple:
64
Calculating Multipliers :
9.4 Calculate multipliers for the two fractions
Left_M = L.C.M / L_Deno = 1
Right_M = L.C.M / R_Deno = 4
Making Equivalent Fractions :
9.5 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. (x-8y) • (x2+8xy+64y2)
—————————————————— = ——————————————————————
L.C.M 64
R. Mult. • R. Num. 3x2y • 4
—————————————————— = ————————
L.C.M 64
Adding fractions that have a common denominator :
9.6 Adding up the two equivalent fractions
(x-8y) • (x2+8xy+64y2) + 3x2y • 4 x3 + 12x2y - 512y3
————————————————————————————————— = ——————————————————
64 64
Equation at the end of step 9 :
(x3 + 12x2y - 512y3) 3xy2
———————————————————— - ————
64 2
STEP 10 : Trying to factor a multi variable polynomial
10.1 Factoring x3 + 12x2y - 512y3
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Calculating the Least Common Multiple :
10.2 Find the Least Common Multiple
The left denominator is : 64
The right denominator is : 2
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 6 1 6
Product of all
Prime Factors 64 2 64
Least Common Multiple:
64
Calculating Multipliers :
10.3 Calculate multipliers for the two fractions
Left_M = L.C.M / L_Deno = 1
Right_M = L.C.M / R_Deno = 32
Making Equivalent Fractions :
10.4 Rewrite the two fractions into equivalent fractions
L. Mult. • L. Num. (x3+12x2y-512y3)
—————————————————— = ————————————————
L.C.M 64
R. Mult. • R. Num. 3xy2 • 32
—————————————————— = —————————
L.C.M 64
Adding fractions that have a common denominator :
10.5 Adding up the two equivalent fractions
(x3+12x2y-512y3) - (3xy2 • 32) x3 + 12x2y - 96xy2 - 512y3
—————————————————————————————— = ——————————————————————————
64 64
Checking for a perfect cube :
10.6 x3 + 12x2y - 96xy2 - 512y3 is not a perfect cube
Final result :
x3 + 12x2y - 96xy2 - 512y3
——————————————————————————
64
Here is your answer:
And hope this help you ✌️✌️✌️✌️✌️