Math, asked by AttitudeBoy999, 2 months ago

Right circular cone shape building has radius 8m and slant height 17m, so, what will be its volume...​

Answers

Answered by SachinGupta01
3

\bf \:  \underline{Given} :

\sf \: Radius = 8 \:  m

\sf \: Slant \:  height = 17  \: m

\bf \:  \underline{To \:  find} :

\sf \: We  \: have \:  to \:  find  \: the \:  volume.

\bf \:  \underline{ \underline{Solution} }:

\sf \: To \:  find \:  the \:  volume,  \: first  \: of  \: all  \: we \:  need \:  to \:  find  \: the  \: height.

\boxed{  \sf \: \red{Formula \:  \longmapsto l^{2}  = r^{2}  + h ^{2}  }}

\sf \sf \:  \implies \: (17)^{2}  = (8) ^{2}  + (h) ^{2}

\sf \sf \:  \implies \: 289 = 64 + (h) ^{2}

\sf \sf \:  \implies  (h) ^{2}  = \: 289  - 64

\sf \sf \:  \implies  (h) ^{2}  =  \sqrt{225}

\sf \sf \:  \implies  h   =  15

\boxed{   \pink{\sf \: So,  \: height \:  is  \: 15  \:  \: meter.}}

\bf \: Now,

\sf \: We  \: will \:  find \:  the \:  volume.

 \boxed{ \red{\sf \:  Formula \longmapsto \pi \: r^{2}  \:  \dfrac{h}{3}}}

\sf \:  \underline{Putting \:  the  \: values},

\sf \:  \implies \:  \dfrac{22}{7}  \:  \times (8)^{2}  \times  \dfrac{15}{3}

\sf \:  \implies \: 3.14 \:  \times 8 \times 8  \times 5

\sf \:  \implies \: 3.14 \:  \times 64 \times 5

\sf \:  \implies \: 1004.8

\underline{ \boxed{ \pink{ \sf \: Thus, \:  volume = 1004.8  \: cm ^{3}  }}}

Similar questions