Math, asked by kiran852135, 5 days ago

Rishabh has borrowed Rs. 4000 at the rate of 7% S.I. what amount he needs to pay after 3 years to clear the debt?​

Answers

Answered by Anonymous
60

 \dag \; {\underline{\boxed{\pmb{\orange{\frak{ \; Given \; :- }}}}}}

  • Principal = Rs.4000
  • Rate = 7 %
  • Time = 3 years

 \\ \\

 \dag \; {\underline{\boxed{\pmb{\purple{\frak{ \; To \; Find \; :- }}}}}}

  • Amount = ?

 \\ \\

 \dag \; {\underline{\boxed{\pmb{\red{\frak{ \; SolutioN \; :- }}}}}}

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ S.I = \dfrac{ P \times R \times T }{100} }}}}}

  •  {\underline{\boxed{\pmb{\sf{ Amount = Principal + S.I }}}}}

Where :

  • S.I = Simple Interest
  • R = Rate
  • T = Time
  • P = Principal

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Calculating the Simple Interest :

 \begin{gathered} \longmapsto \; \; \sf { S.I = \dfrac{ P \times R \times T }{100} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { S.I = \dfrac{ 4000 \times 7 \times 3 }{100} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { S.I = \dfrac{ 4000 \times 21 }{100} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { S.I = \dfrac{84000}{100} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { S.I = \cancel\dfrac{84000}{100} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; {\underline{\underline{\pmb{\pink{\sf{ Simple \; Interst = ₹ \; 840 }}}}}} \end{gathered}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Calculating the Amount :

 \begin{gathered} \dashrightarrow \; \; \sf { Amount = Principal + Simple \; Interst } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Amount = 4000 + 840 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; {\underline{\underline{\pmb{\green{\sf{ Amount = ₹ \; 4840 }}}}}} \end{gathered}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Therefore :

❛❛ Rishabh had to pay ₹ 4840 to clear the debt . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions
History, 2 days ago