Math, asked by sushmachandel1976, 4 hours ago

Rita has bought a carpet of size 4 m × m. But her room size is m × m. What fraction of area should be cut off to fit the carpet wall-to-wall?
\pi \sin( \sec( \sin( \sec( \sin(?) ) ) ) )  \sin( \infty  \beta  \cos( \infty  {5 {6 {6y - xyx \times 343313yx { \frac{2 { {2 {y <  | | | | | | | | \geqslant 1 \leqslant  \leqslant  <  { { { \leqslant  \leqslant  { <  {22 \sqrt[ <  \sqrt[ \beta  \binom{ \\  \alpha  \binom{ \alpha  \binom{ \binom{?}{?} }{?} }{?} }{?} ]{?} ]{?} }^{2} }^{2} }^{?} }^{?} }^{?} | | | | | | | | }^{?} }^{2} }^{2} }{?} }^{2} }^{?} }^{?} }^{?} ) )

Answers

Answered by damorkanta484
0

Answer:

Area of carpet = 4 × 6 1/4 =4 × 19/3 = 76/3 metre square

Area of room = 3 1/4 × 5 3/4 =13/4 × 23/4 = 299/16 metre square

Now, 76/3 - 299/16

1216 - 897/48 = 319/48 = 6 31/48 metre square

6 31/48 metre square carpet should be cut.

Similar questions